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This is a study of the aggregate of complete conics in the plane S, and their repre-
sentation in S,, by the points of a model variety Q of dimension 5 and order 102.
Equivalence bases in each dimension on Q are obtained and described, together with
bases on certain important subvarieties of Q, with a particular view to clarifying the
enumerative geometry of complete conics. A number of important and interesting
systems of complete conics are studied in some detail.

INTRODUCTION

The intention of this work is to record a detailed study of a particularly important geometric
variable — the complete conic of S, — together with its subsidiary variables. This is the variable
of which preliminary studies have been made independently by Severi and van der Waerden,
mainly because it confronts the general theory of enumerative geometry with an almost ideal
example of its applicability in practice. Briefly, a complete conic of S, is a couple composed of
a conic-locus S and a conic-envelope E which are so related that if S is irreducible, then E is the
envelope of tangents to S, while otherwise the couple (S, E) may be any proper specialization of
a generic couple of the former type. We shall find that the aggregate of complete conics is an
oo8-system whose standard model is an irreducible fivefold variety Q = Q}*[27], and our study
will be basically equivalent to a detailed exposition of geometry on this variety, including the
classification of its sub-varieties of different dimensions into their separate systems of algebraic
equivalence.

In what follows, we shall use the symbols [S] and [W], for detailed references, when referring
to the two most important accounts of the subject given by Severi and van der Waerden respec-
tively. [ 8] is a substantial part (some 40 pages) of Severi (1940) 1, a preliminary version of which
had previously appeared in an earlier paper (Severi 1916) on the same general field of enumera-
tive geometry. [W] is van der Waerden (1938); thisis a paper of outstanding clarity and power, so
much so that we shall not hesitate to follow its leads very closely indeed in the earlier parts of the
exposition.

1 I have not been able to make much use of the earlier theoretical part of Severi’s memoir [S], mainly for the
reason that its arguments and assertions seemed to me to lack the necessary precision to carry conviction. This

applied particularly to §§36-41, headed ‘Digressione su alcune proprieta della base’, in which, for example,
Severi’s statement and proof of his central lemma (§37) completely eluded my comprehension.
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COMPLETE CONICS AND THEIR MODEL VARIETY 401

Notation

We use the symbol #V%[r] to indicate that V is a variety of dimension d, order z and section
genus p lying in projective space S,; and we usually omit any letters in the symbol that are not of
immediate interest. We also use the shorthand ?F» = Cm(Of,...,OF) to indicate that the
surface F is the projective model of a system of plane curves of order m having base points O,
of multiplicity £; (¢ = 1, ...,s). Other symbols in constant use throughout the paper are given in
the following list,

S’,T*l a complete conic of S; with S as locus : and E as envelope

Q the standard model Q}°2[27] of all S E

8,n the varieties on Q representing 8-conics and n-conics

o the intersection of 8 and n, representing dn-conics

A;, B; the spaces of conic-loci and conic-envelopes (of S,) respectively

¢ the Veronese surface in Ay which maps repeated lines of S,

M the cubic symmetroid M3, locus of conic-planes of ¢

conics on 8n representing dn-conics with a fixed vertex or a fixed axis, respectively

the plane of a conic g, representing 8-conics with a fixed vertex

the plane of a conic 4, representing n-conics with a fixed axis

a surface 2F!2 on 8n mapping 8n-conics with vertices on a fixed line

another surface 2F12 on 81 mapping dn-conics with axes through a fixed point

condition on S E that S be apolar to a fixed conic-envelope of S,

condition on S E that E be apolar to a fixed conic-locus of S,

condition that S pass through a fixed point

condition that E touch a fixed line ,

condition on S, E E that it have a given point and line as pole and polar

condition that S E touch a given line at a given point

a del Pezzo sextic surface, image on Q of a trisecant plane of ¢

a rational scroll °R8, image on Q of a tangent plane of ¢

a rational surface 3F!4, image on  of §-conics with arms passing separately through two

fixed points

a rational scroll °R¢, image on Q of §-conics whose arms correspond in a given harmonic

homology of S,

J a threefold °R3}, image on 8 of 8-conics with vertices on a fixed line

|K| the complete system of cubic primals of A that pass through ¢; the variety Q is the
projective model of this system

i)
-
(]

a < .
=4 x§|§)<l1:l = Q © ™K

A

1. SEVERI’'S POINT-PRIME COUPLES OF A;

Before embarking on the formal identification of complete conics as given in [W], which we
shall take as our basis, we must indicate briefly the nature of Severi’s prior definition as given in
the two papers just mentioned.

If o denotes the well known mapping of the conic-loci S of S, on the pomts P of a projective
space A;, then it is well known also that o induces a dual mapping ¢’ of the conic-envelopes E
of S, on the primes IT of A;; in fact IT is the prime of A; whose points map, under o, all the conic-
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402 J. G. SEMPLE

loci S that are apolar (conjugate) to a given envelope E. Now let M = Mg be the cubic primal of
A; that maps under o the line-pairs of S,, and let ¢ be the Veronese surface — the double surface
of M - that maps under o the repeated lines of S,. It appears, then, that if P is the image under ¢
of an #rreducible conic-locus S, and if E is the envelope of tangents to S, then the image of E under
o’ is the polar prime II of P with respect to M. Severi then identifies the complete conics of S,
by the aggregate of the couples (P, IT) of S5 such that either II is the polar prime of P, when this
polar prime exists, or IT is the limit of such a polar prime when a variable point of A; approaches
a point P of ¢. This leads to a classification of complete conics identical with that which we
describe in the next section.

2. THE EIGHT FUNDAMENTAL RELATIONS

In this section we follow closely the lines laid down in [W].

Let 4 = (a;) and B = (b;) (i,j = 0, 1,2) be the symmetric matrices defining the equations
X ay%%; = 0and X by;v,0; = 0 ofa conic-locus S and a conic-envelope Ein S,; andleta = (ag, ay;,
ayy, Qga; Byg, Gg9) and b = (bgg, boy, b1y, boa, byg, bes) be the points of projective spaces A; and By
that represent S and E respectively in the usual mappings of the conic-loci and conic-envelopes
of 5, on the points of A; and By. All the couples (S, E) are thus mapped on the two-way points
(a, b) of the space A; x B;.

We now introduce the basic correspondence T between conic-loci and conic-envelopes. This is,
namely, the irreducible correspondence defined by its generic two-way point (e, 8) in Ag x By,
where the components a;; of & are independent indeterminates while the components gy, of #
are the cofactors of the &;; in the determinant |e;;|. The graph of T in A; x B; is a well defined
irreducible two-way algebraic variety #~ of dimension five; and we define the class of complete
conics of S, to be that of the couples (S, E) that are represented by points of #7, i.e. by all proper
specializations (a, b) of (a, ). A set of two-way equations that precisely define T (i.e. #°) were
first formulated by van der Waerden [W, p. 647]. These take the form of the eight fundamental
relations (defining complete conics) namely

2
2 atabja =0 (1:]. =0,1, 2; : 551.)
=0 2.1)
2 2 2 (2.
Xz aOabOa =2 alabla =2 azabza
a=0 a=0 a=0

Van der Waerden formally verified that all the solutions (g, b) of these equations correspond to
four projectively distinct types of complete conics (S, E), namely

(i) the regular type, with S irreducible and E the envelope of tangents to S,

(ii) the &-conic, for which S is a pair of distinct lines — the arms of § — while E is the vertex of this
line-pair counted twice,

(iii) the n-conic, for which E is a pair of distinct points — the eyes of n — while S is the join of
these points — the axis of n — counted twice; and

(iv) the 8n-conic, for which S is a repeated line — the axis of 8n — while E is a repeated point
of this line — the veriex of dx.

Notation. In view of the above, we may now introduce the general notation S’,\E for the
complete conic whose locus S and envelope E, with matrices (a;;) and (,;) respectively, satisfy
the eight fundamental relations (2.1).
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COMPLETE CONICS AND THEIR MODEL VARIETY 403

In what follows we shall often find it convenient to use each of the terms §-conic and n-conic
in the broad sense, regarding the dn-conics as specialized members of each of the two families
(8) and ‘(11); but it will always be clear from the context in what sense the terms in question are
being used.

2.1. The standard model Q of complete conics

We now take the one-way equivalent of the two-way variety #~ to be our standard model Q
of the complete conics of Sy; so that Q is a five-dimensional variety on the Segre product of A;
and B, a V,, in a space Sg;. The generic point of Q has coordinates (a;;f;;) in Sy, where (e, 8)
is the generic point of % as previously defined. We may say then that the points of Q are all those
points (a; ;) for which a and & satisfy the eight fundamental relations (2.1).

If the a;; are the coordinates of an arbitrary point of A, and if 4;; denotes the cofactor of a;;
in | 4|, then we can say that Q admits the birational parametric representation

c= (aijAt'j') (isj:i',j’ = 0, 1: 2) (211)

on the space A;. By virtue of the relations (2.1) which define eight independent primes of Sg;,
we see that Q lies in a space S,;, being the complete intersection of V,, by this space. Further,
Q) contains fourfolds § and n, whose points represent -conics and n-conics (in the broad sense);
and it contains also a threefold 8n (common to & and n) whose points represent the 8n-conics.

2.2. The threefold n

Plainly 8n is a one:one map of the incident point-lines £, of S,. We recall now that the
minimum model of these £7% is a variety V§[7], this being a (general) prime section of the Segre
product V{[8] of two planes. By use of the parametric equations (2.1.1), it can be verified that

8 is the transform of V§ by all the quadrics of its ambient space S,.

Hence 87 is of order 6 x 2% = 48; and it is normal in a space S,

The properties of the minimum model V§[7] are well known (see, for example, [S, §59]).
It is simply generated by each of two co?-systems of lines of which any line of the first system
represents ¥, % for which « is fixed while any line of the second system represents #; % for which
is fixed. It follows that 8 is simply generated by each of two oo?-systems of conics. We shall
denote a conic of the first system, representing 8n with a fixed vertex, by 4, and the planet of
such a conic by a. Similarly we shall denote a conic of the second system, representing &n with
fixed axis, by b and the plane containing it by B. It is easy now to verify, and will be clear in any
case from our later discussion (§5) of the birational representations of Q on Ay and B; respectively,
that ' '

the fourfold & is simply generated by the conic-planes o of Sn; and n is simply generated by the conic planes
B of 5n.

From known results for algebraic equivalence of curves and surfaces on V§[7] given by Severi
[S, §59] we deduce the following results:

(i) an equivalence base for curves on 8n is a pair of conics (a, b); and
(i) an equivalence base for surfaces on 8n is constituted by a pair of surfaces (p, ), where p represents
dn-conics with vertices on a fixed line of Sy, while & represents Sn-conics with axes through a fixed point.

1 Each conic-plane a of 8n maps the 8-conics of S, that have a fixed vertex; and, similarly, each conic-plane
B of 8n maps the n-conics that have a fixed axis.

28 Vol. 306. A
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404 J. G. SEMPLE

The surfaces p and o, in fact, are quadric transforms of the two types of cubic scrolls on V§[7],
of which the first represents £, with x on a fixed line and the second represents £;% with u
through a fixed point. Plainly p is generated by the conics a that meet a fixed 4, while o is generated
by the conics b that meet a fixed a. Each of p, o is a surface 2F22 = C4[O?].

Finally, for subsequent use, we introduce a further notation:

The symbols u, v will denote respectively a line that lies in a plane o and a line that lies in a plane B.

A line u represents an involution of §-conics with a fixed vertex, this involution being degenerate
if u touches the conic ¢ in the plane « that contains it; and, similarly, v represents an involution
of n-conics with fixed axis.

2.3. The special van der Waerden parametrization of Q

We introduce a result which is basic for all that follows and represents a fundamental simpli-
fication of the situation. This is

THEOREM 1. The varieties Q, 8, 1 and 50 are all non-singular; and & and v meet simply, without contact,
in 8.

This result is given both by van der Waerden [W, §1] and by Severi [S,§50], but we shall
confine ourselves here to an exposition, with some amplification, of van der Waerden’s method of
proving it, and to some remarks on further applications of the special parametrization devised
by van der Waerden in the course of his proof.

We begin by remarking that the group of self-collineations of S, induces a group of self-
collineations of ; also that this induced group is plainly transitive over each of the four classes of
points on Q that represent projectively distinct types of complete conics. Reflexion then shows
that all the results stated in theorem 1 will follow if we can define a suitable set of uniformizing
parameters X, y, z, %, v for Q in the neighbourhood of a chosen point P, of &n such that the
equations of §, n and 3n in terms of these parameters arev = 0,z = 0 and # = v = 0 respectively.

Suppose then that P, is the point of 8n representing the dn-conic with equations

x%=0, =0,
i.e. with coefficient vectors

e = (1,0,0,0,0,0) and &° = (0,0,0,0,0,1).

For points of Q in the neighbourhood of Py, the coordinates ay, and &5, will not be zero, so that
we may take gg = 1 for such points. We may then express the five remaining a,; in terms of five
new parameters %, y, z, ¥, v by the matrix equation

1 0 011 0 O 1 x g 1 X Y
(ag) == 1 O] 0 u 0] [O 1 z]l= x4u xy+uz |. (2.3.1)
0 0 wj |O O 1 xy+uz Yy +uvtuz?

y z 1
Further, the resulting equations expressing the five a;; (other than g,, = 1) in terms of x, y, z, u, v
are rationally reversible, giving

X =0y, Y=4dgy, z=—4y/ Azz,}
u=Ay, v= ‘A'/Agz
where 4;; denotes, as usual, the cofactor of a;; in the determinant |4| = |q,|.

Equations (2.3.1) and (2.3.2) define a birational correspondence between the points of the .
space A;, excluding the prime gy = 0, and those of the space —say ;- of the parameters

(2.3.2)
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COMPLETE CONICS AND THEIR MODEL VARIETY 405

%, §, 2, 4, v; this, in its turn, will transform the birational representation of Q on A;, given by
equations (2.1.1), into a birational representation of Q on the space Z;. This will have the form

Cijiry = Gy bi’j’ (i3j’ i”j' =0,1, 2)9 (2.3.3)
where the a;; are given by (2.3.1) with gy = 1, and the b, are the 4, with a common factor u
removed, explicitly

(1 —x —(y—x2)J[w 0 O 1 0 0

0 0 1 0 0 1t (y—xz) -z 1
[uv +vx2 + (y—x2) —wv+2(y—xz) —(y—=x2)

=| —xw+z(y—xz) v+ 22 -z . (2.3.4)
| —(y—=xz) -z 1

We now observe that in the representation of Q on Z; given by (2.8.3), with (2.3.1) and (2.3.4),
our chosen point P, of 8n is mapped on the origin O of Z;; and, further, six of the coordinates
a;;byy, of the general point of Q have the values

1, %y —z,u+x2v+2%

while all the others can be written as polynomials in these six. It follows from this that x, y, z,
u, v are uniformizing parameters for Q in the neighbourhood of P, and that P, is therefore a
simple point of Q. Further, a point of Q in the neighbourhood of P, will lie on & if and only if
(a;) hasrank < 2 and (&;;) hasrank 1; and from (2.3.1) and (2.3.4) it follows that this happens if
and only if v = 0; i.e. the local equation of § at P, is v = 0. Similarly the local equation of 1 at
P, is u = 0; and finally the local equations of 1 near P, are « = v = 0. This implies that each of
5, n and 81 has a simple point at P,, also that the tangent [4]’s to 3 and q at P, are distinct,
meeting only in the tangent [3] to n at P,. By what we said earlier, then, theorem 1 has now
been completely proved.

The significance of the special parametrization described above is that it provides a birational
representation of Q on an affine space 25, which is based on an arbitrarily chosen point P, of 8n,
that it carries P, into the origin O in Z;, and that it is regular as between the neighbourhoods of
P, on Q and of O in ;. Further it transforms 8, 1 and 8y into two primes through O and the
solid in which these primes meet. Besides the principal use made of it in proving theorem 1, it
can be used in suitable cases to reduce problems of computing multiplicities of intersection of
varieties on Q to those - simpler in many cases — of computing the corresponding multiplicities
in ;. To facilitate such computations we note a few salient details of the representation, recalling
that the chosen point Py was taken to represent the 8n-conic of S, with vertex X, and axis X, X,.

Let a, b be the two conics of 8n through P, and let a,  be the planes of these conics (generators
of 8 and n respectively); also, in an obvious notation, let OX, OY, OZ, OU, OV be the axes
at O. Then

(i) theprimesOUXYZ and OVXYZ represent 8 and 1, while the solid OXYZ represents dn;

(ii) the axis OX represents the conic a, image of 3n-conics with X, as vertex; ‘

(iii) the axis OZ represents the conic b, image of n-conics with X, X, as axis;

(iv) the plane OUX represents a, image of 5-conics with X, as vertex;

(v) the plane OUZ represents §, image of n-conics with X, X, as axis; and

(vi) the plane OXZ represents a surface ¢ of &n (cf. §2.2), image of the §n-conics of S; with
axes through X,.

28-2
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406 J. G. SEMPLE

As examples of the computations referred to, we consider two surfaces, both lying on 8, namely
the surface 1 thatimages §-conics with X, X asone arm and the surface o that images the §-conics,
with one arm through X, and the other through X,. Each of 1, ® contains the conic 4. We find
then that each of 1, @ is represented on X, by a cubic scroll (with directrix in the prime at infinity)
which has simple contact with the solid OXYZ along the axis OZ. This means that the conic &
counts fwice as a curve of intersection of each of 1, © with &n.

3. THE TWO-WAY MODEL VARIETY ¥

We now return to the two-way model %", with equations (2.1), which maps all complete conics
and we study in particular the sub-varieties of #~ that represent the different types of complete
conics. To this end we first recall for convenience some basic properties of the well known
mappings S —a and E b of the conic-loci S and conic-envelopes E of S, on the points of the
spaces A; and B; respectively.

First, as already mentioned in §1, the repeated lines of S, are mapped on the points of a
Veronese surface ¢ of A;; and, dually, the repeated points of S, are mapped on the points of a
Veronese surface V of B;. Next, the line-pairs of S, are mapped on the points of a cubic primal
M = M3 of A; that passes doubly through ¢ and is simply generated by the conic-planes of ¢
(planes that meet ¢ in conics); and, dually, the point-pairs of S, are mapped on the points of a
cubic primal N = Nj of B; that passes doubly through V. The basic correspondence T defines a
Cremona transformation t of A; into By with equations b;; = 4;; (i, = 0,1,2); and this has
inverse 1! with equations a;; = By; (i,5 = 0, 1, 2). The quadrics of A; through ¢ form a homa-
loidal system (@) which is carried by 7 into the primes of B;; and, conversely, the quadrics of B,
through ¢ form the reverse homaloidal system (¥). The transformation 7 carries each conic-
plane of ¢ into a point of ; and similarly 1~ carries the conic-planes of { into the points of ¢.

We now recall that the mappings S—a and E — b determine a natural correlation x between
points of ¢ and . We say, namely, that points P, P’ of these two surfaces correspond in x if the
repeated line L and the repeated point V of S, represented by P and P’ are such that V lies on L.
To a given point P of ¢ there correspond all the points of a conic on | which we denote by
¢’ = x~1(P); and similarly to a point P’ of  there correspond all the points of a conic 6 = x~1(P’).
The plane n’ of ¢’ maps the point-pairs of S, that lie on the line L, and the plane x of 6 maps the
line-pairs of S, that have vertex V. The classes of two-way points (P, P') of S; ; that represent
the different types of complete conics can now be identified as follows:

(i) a regular complete conic is mapped in S; 5 by a pair (P, P’) such that P does not lie on M,
and P’ = 1(P);

(ii) a 8n-conic is mapped by a pair (P, P’) such that P lies on ¢, P’ lies on { and P, P’ corre-
spond in x;

(iii) an n-conic (in the broad sense) is mapped by a pair (P, P’) such that P lies on ¢ and P’
lies in the plane of the conic x(P); and

(iv) a 8-conic (in the broad sense) is mapped by a pair (P, P’) such that P’ lies on ¥ and P
lies in the plane of the conic x~1(P’).

The aggregates of the two-way points defined in (ii), (iii), (iv) constitute the degeneration sub-
varieties on W',
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4. THE NEIGHBOURHOOD § OF ¢ IN A

Whereas the above mapping of the complete conics of S, on the two-way points of ¥is one: one
without exception, we shall often want to use the birational representations of complete conics
on one or other of the spaces A; or B (cf. §2.1), which are certainly not unexceptional. As regards
the representation on Ay, for example, we note that the regular complete conics of S, correspond
one:one to the points of the open set A; — M, and 8-conics (in the strict sense) correspond one:one
to the points of the open set M — ¢; but about n-conics and 8n-conics we can only say that all
of them that have a given axis correspond to one and the same point of ¢. To close this consider-
able domain of ambiguity we introduce the concept of the neighbourhood $ of ¢ in Ag; or, more
particularly, the concept of neighbour-points Py of points P of ¢. :

To this end we envisage ¢ as the base surface of the prime ideal p of primals of A; that contain
it. Let P be a point of ¢ and let o be the tangent plane to ¢ at P. The primals of A4 that contain ¢
and formally satisfy the condition that they touch at P a given solid Z through « form a sub-ideal
p, of p. If ¢is any direction at P that does not lie in o, then ¢ imposes a simple linear condition on
primals F* of p, of any given order n > 2, to contain it; but all such directions ¢ that lie in a given
solid such as T impose the same linear condition on the F#, namely the condition (effectively)
that the tangent prime to F» at P (which already contains a) should contain the solid in question.
We may therefore regard the oo? directions at P that lie in Z but not in o as constituting a single
neighbour point P; of P, determined by the sub-ideal p,. Each point P of ¢ has then co? such
neighbour points, each associated uniquely with a tangent solid £ to ¢ at P; and these constitute
the neighbourhood ?4, of P relative to $. Finally the whole neighbourhood & of ¢ is the aggregate of
neighk:ourhoods P, of points P of ¢; and it is composed therefore of the 0o points P, that constitute
these Py. Any proper dilatation of ¢ - in the accepted meaning of this term — will carry $ into a
four-dimensional algebraic variety on a birational transform of A;. ’

Returning now to the Cremona transformation 1 of A into B;, we remark that the neighbour
points P, of a point P of ¢ are carried by 7 into the points P’ of the conic plane n’ of . Further,
for given P, the one:one correspondence between Py and P’ is such that if P, is contained in the
quadric nodal cone of M at P, then P’ lies on the conic k(P) in n".

We record then the following:

(i) every n-conic (in the broad sense) is uniquely represented in Ay by a neighbour point P,
(relative to ¢) of a point P of ¢;

(ii) every dn-conic is uniquely represented in Ay by a neighbour point P, (of a point P of ¢)
that lies on M, i.e. which is such that the solid 2 defining it is a generator of the nodal cone of
M at P; and

(iii) the whole neighbourhood § of ¢ is a one:one map of n-conics (in the broad sense), and
the neighbourhood §y of ¢ on M is a proper one:one map of all 5n-conics.

Corresponding results hold for the representation of complete conics on Bg.

5. THE REPRESENTATION OF Q ON A;

Returning now to the standard model Q of complete conics, we prove the following result from
which most of our detailed knowledge of geometry on Q will be derived.
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THEOREM 2. The variety Q is the projective model of the complete system of cubic primals of Ag that contain
the Veronese surface ¢.

Proof. From the equations (2.1.1) of the parametric representation of Q on A, we see that the
prime sections of Q are represented on Ag by a system of cubic primals K, whose equation is

- SAyepay App =0 (1,5,i°,5'=0,1,2), (8.1)

where the A,y are arbitrary parameters; and we have already noted (§2.1) that the effective
freedom of this linear system is 27 because of the eight fundamental relations (2.1) between the
36 cubic forms a;; 4;;. Since the six forms 4;; are a base for quadrics through ¢, it follows that all
the primals K contain ¢. Further, from the plane representation of ¢ we deduce readily that the
freedom of all cubic primals of A; that contain ¢ is precisely 27. It follows then that prime sections
of Q are represented in A; by the complete system |K| of cubic primals through ¢. This proves
theorem 2. The transformation 7 carries | K| into the system |K’| of cubic primals of By through .

The order of Q will be the grade y of the complete system |K| = |L +®| where L is a prime
of Ag and @ is a quadric through ¢. Hence, since |®| is a homaloidal system, we find that

y = (L+®)% = L5+ 5L4D +... + @5
=145:24+10:4410:44+5-241 = 102.

Hence: The order of Q is 102.
Now consider the degeneration fourfolds 8,  and their intersection 81 on Q. By virtue of
theorem 1 we are able to make the following observation.

The birational transformation Ay—Q constitutes a proper dilatation of the surface ¢ in Ay into the
Jourfold n on Q. :

For it carries all the cubic primals of A; through ¢ into the prime sections of Q; it carries each
point of A; that does not lie on ¢ into a unique point of Q and no two such points into the same
point of Q; and it carries the co* neighbour points of ¢ (cf. §4) one:one into the points of the
fourfold n on Q. Further, the primal M, since it passes doubly through ¢, has to be augmented by
the neighbourhood § of ¢ to constitute a primal of |K|, and it therefore represents the fourfold
8 on Q, which forms with n a complete prime section of Q. By symmetry, then, each of § and ¢
must be of order 51 (half that of Q). Finally, § and n meet without contact in 81; and &n, as we
remarked in §2.2, is of order 48, being a complete quadric transform of the minimum model
V$§[7] of incident pairs 57 of S,. Hence:

The fourfolds & and v on Q are each of order 51, and together they constitute a prime section of Q; also
dn is a threefold of order 48 which spans the common ambient prime of & and n.

The transformations A;—Q and B; - give ready confirmation of the fact, noted in §2.2,
that the conic-planes a and B of §n generate (simply) & and n respectively. Thus, for example,
the transformation A;— Q carries M into § and each conic-plane of ¢ — a generating plane of
M - into a plane of §; and it carries the conic in which the former plane meets ¢ — as a conic
in this plane — into the conic a in which the latter plane meets &n.
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6. THE CONDITIONS Jll,V AND THEIR SPECIALIZATIONS Ji, V

The complete conics of S, that satisfy any given algebraic condition ¢ will be represented on
Q by the points of an algebraic variety — the condition manifold of ¢ — which we denote by the same
symbol ¢. In this sense 8, n and 81 are condition manifolds; and we remark that each of § and
is isolated with respect to linear equivalence on Q because the primals M and N which represent
them in A; and B respectively are each uniquely determined by their double surfaces ¢ and V.

We now define two types of basic condition on a complete conic S:i:

(i) pis the type of condition that requires the coefficients a;; of S to satisfy a fixed linear con-
dition Xk;;a;; = 0, where the k;; are constants; and

(ii) v is the type of condition that requires the coefficients b;; of E to satisfy a fixed linear
condition.

In geometrical terms any condition p expresses precisely that the locus S is apolar to a fixed
conic-envelope ¢; while any v expresses the condition that E is apolar to a fixed conic-locus s.
Specializations arise for degenerate ¢ or 5. In particular, if ¢ is a repeated point P2, then y becomes
the condition that S passes through P; and if s is a repeated line L2, then v becomes the condition
that E contains L. When we wish particularly to refer to conditions of these two special types, we
shall distinguish them as follows:

(i') B (specialization of p) is the condition on a complete conic that it pass through a fixed
point; and
(ii") ¥ (specialization of v) is the condition on a complete conic that it touch a given line.

Condition manifolds p and v on Q are represented in A; by primes and by quadrics @ respec-
tively; whereas condition manifolds ji and V are represented in Ay by contact primes of ¢ (each
touching ¢ along a conic) and by special members ®@* of (®) which are the nodal cones of M at
points of ¢. Each ®* is a quadric plane-cone whose vertex is the tangent plane 1 to ¢ at a point P;
and it is generated by the solids that join < to the conics on ¢ that pass through P. Further, ®*
touches M along the cone V3 that projects ¢ from P, being therefore a contact quadric of M. Dually,
the condition manifolds p and v on Q are represented on B; by the quadrics ¥ and by primes
respectively, while the fi and V are represented by the contact quadrics ¥* of N and by the
contact primes of .

Now let @ denote a prime section of Q, represented in Ay and B respectively by a cubic primal
K and by a cubic primal K'.

In A;, with p now denoting a prime of this space, the basic equivalence relations between K,
M and ® are expressed symbolically in the form

K=3u—-¢, M=3u-2§) O®=2u-¢ ‘ (6.1)

and there are analogous relations between K’, N and ¥ in By. Since § and 5 are represented in
A; by M and § respectively, equations (6.1) lead to the following relations of linear equivalence
on £, namely O=38u—-1, d=3u—-2nq, v=2u—n (6.2)
and these are equivalent to the formulae

v=2u—1, p=2v-3 (6.3)

and o=p+v=n+d. (6.4)
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The two formulae (6.3), interpreted numerically, are the basic characteristic formulae for complete
conics; and it appears from (6.4) that |p +v| is the complete system of prime sections of Q.
From the representation of Q on A;, we deduce.directly the following basic enumerative
results
pW=vi=1, pv=pvi=2 pdv?=pdd=¢, (6.5)

observing that these generalize the familiar elementary results for i*v# with a + £ = 5.

A useful application of (6.5), combined with the relation (6.4), ® = p +v, is that these formulae
enable us in many cases to compute directly the (virtual) orders of sub-varieties V,; (0 < d < 4)
of Q. Suppose, namely, that V,; is known to satisfy a relation of algebraic equivalence on Q of
theform V; = F(, v) where F(y, v) is a form of degree 5 — din p, v with integer coefficients. Then,

by virtue of (6.4), we may write -
0(Vyg) = (1 +V)2F (1, v);

and this is evaluated by substituting from (6.5) for each product p*v#(a + 8 = 5) in the expansion
of the right hand side. Thus, for example, using (6.3), we may write

0(8n) = (r+v)*(2v—p) (2n—v)
= — 28 — piv + Tpdv2 + Tpv8 — pvi — 2v6
=—21-1-247-4474-1-2-2-1
= 48 |

in agreement with the result recorded in §2.2.

At this stage, with enumerative results in mind, we must point out that a condition manifold
von ( (as distinct from a general v) touches § along their intersection, as follows from our previous
remark that a quadric @* in A; is a contact quadric of M; also, dually, a manifold i touches q
along the threefold they have in common. Thus, for example, whereas the general condition
curve p?v? on Q meets each of § and 7 in four distinct points, a condition curve ji2v2 has only one
intersection — but this counts quadruply - with each of 8 and n. As it happens, however, the
general system ji%v2 is composite, being made up of two similar components, as is clear from the
familiar example in the euclidean plane of the circles that touch two given lines. Thus whereas
the condition curve of a general system p2v? is an elliptic octavic curve 1C8 quadrisecant to each
of & and n, that of a system ji?¥? consists of a pair of rational normal quartic curves °C¢ which
each touch 8 (but not each other) at the same point and each touch n at a common point.

6.1. Some examples of condition manifolds on Q

We now note, for future reference, some details about the projective character of the condition
manifolds p, v, ji and V on Q, and of the intersections of these with §,  and 8n. In these examples,
as in others to be given later, the results we give are obtained either from the representation of
the manifolds in question on Ay (or By) or directly from the systems of conics they represent by
use of the parametric equations (2.1.1) of Q.

(i) The general p. This, being represented in A; by a general prime 11, is the projective model
of the system of primals cut on II by primals of |K|. It is, therefore, the projective model V3t
of the cubic primals of II that contain a rational normal curve °C%. The general fi, on the other
hand, is a V§!, projective model of the cubic primals of a contact space II that touch ¢ along the
contact conic of this space. There are analogous characterizations of v and v.
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(ii) The general threefold p3. This maps the line-pairs (3-conics) of S, that are conjugate with
respect to a fixed conic-envelope e. It is a V32, projective model of the sections of a cubic primal
M3[4] - section of M by a prime II — by cubic primals of II that pass through the double curve
°C4 of M3. Since M3 is the chord locus of °C#, pb is simply generated by co? lines of which one lies
in each plane « of 8. There are modifications for i3 and analogous results for v and vn.

(i) The general pm. This maps the point-pairs (n-conics) of S, whose axes touch a fixed
conic-envelope e. It is a V3® which is simply generated by oo! planes B of n (each representing
n-conics with a fixed tangent to ¢ as axis). On the other hand a variety jin, representing the
point-pairs of S, whose axes pass through a fixed point, is a V§ counted twice, which is generated
by the oot planes p of n that meet a fixed conic a of 3n. There are analogous results for v§ and
va.

(iv) The general pdn. This is the model of §n-conics whose axes touch a fixed conic-envelope e.
It is a surface ®F%¢, projective model of a curve-system GS[AS, B2]; and it is generated by ool
conics & of 81 (represented by lines through A). On the other hand fidn is a surface of contact, a
2F}2 counted twice. This 2F£? is the projective model of a curve-system C4[A?]; it is generated by
the oo! conics 4 of 81 that meet a fixed conic a; and it is therefore a surface on &n of the type that
we denoted earlier (§2.2) by . There are analogous results for vén and vén.

7. ALGEBRAIC EQUIVALENCE BASES ON , 8§, 1 AND 87

In what follows we shall be largely concerned with the classification of systems of algebraic
equivalence of varieties of different dimension on each of Q, 3, n and 8n; and, in particular,
with the determination of the simplest bases for each such type of equivalence, according to
the dimension of the varieties involved. For 87, as indicated in §2.2, the results are already
known, a base for curves being a pair of conics (2, ) while that for surfaces is a pair (p,c), as
previously defined. Further, the results for either of 8 or  will follow by duality from those for
the other. Thus we have only to investigate equivalence bases for fourfolds, threefolds, surfaces
and curves on Q, as well as those for threefolds, surfaces and curves on § (or 7).

The varieties Q and 8 are birational transforms of the space A; and the (rational) primal M.
Since the operations that convert A; into Q and M into the fourfold 8 are proper dilatations, of the
surface ¢ in the first case into the fourfold n, and of the double surface ¢ of M in the latter case
into the threefold &7 (cf. §5), we shall allow ourselves to assume the following:

(@) for each dimension d (1 < d < 4) on Q, the relation of equivalence of d-folds on Q has a
finite basis, and the same holds for the equivalence of £-folds on § for £ = 1,2, 3; and

(6) on Q, as also on 3, the base numbers for varieties of complementary dimension, say
d+d = bork+k =4, areequal [cf. S, §6].

This means that, if we can find bases for fourfolds and threefolds on €, then we can select dual
bases for curves and surfaces on Q, subject only to the condition that the intersection matrix for
each proposed pair of dual bases is non-singular.

For fourfolds on €, a direct proof that the pair (i, v) constitutes such a base is easy and we shall
give this in the following section. For threefolds on Q and for threefolds and surfaces on 3,
however, we need to apply the rather sophisticated machinery of the so-called method of degenerate
collineations; and it will be convenient to postpone the detailed theory and application of this
method to a later stage (§11), where the problems to be solved can be treated together.

We propose, therefore, pending this later discussion, to put forward as prospective bases for

29 Vol. 306. a
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threefolds on  and for threefolds and surfaces on §, the bases that naturally suggest themselves
when the properties of the two dilatations concerned are taken into account. On occasion,
application of these prospective bases will be made in anticipation of their subsequent formal
verification.

7.1. Equivalence bases for fourfolds and curves on Q

Let U be any irreducible fourfold other than & or n on Q. Then U will be represented on A,
by an irreducible primal U. Let z > 1 be the order of U and let i > 0 be the multiplicity of ¢
on U. Then plainly 2i < n; for, in the contrary case, U would contain every chord of ¢; and
hence, being irreducible, it could only be the primal M, image of §, contrary to hypothesis. Now
U is a member of the complete linear system |U| of primals of A; that are of order n and have ¢
as ¢-tuple surface; and hence U is a member of the corresponding complete linear system |U]|
on Q. Further |U| contains members which each consist of n— 2i primes of A; together with
i quadrics @ through ¢; whence |U| contains members which each consist of n — 2/ manifolds p
and ¢ manifolds v .This means that every irreducible fourfold on Q, other than § or n, is linearly
equivalent to a composite fourfold of the form pu + gv, where p and ¢ are non-negative integers.
As regards 3 and 7, moreover, we have the virtual equivalence relations

§~2v—p and n~2u-—v
(cf. (6.3)). By combining the above results we have

THEOREM 3. A pair of condition manifolds p and v constitutes a complete base for the algebraic equiva-
lence of fourfolds on Q.

If ¢ ~ pp +gv, where p and ¢ are integers, then p, ¢ are characteristics of the condition ¢ with
respect to the equivalence base (i, v). To find p, ¢ for a simple condition we first select a convenient
base for curves on Q, a base complementary to the base (y, v) for fourfolds. This will consist of
two members (cf. §7); and subject to certain observations we make below, we can take these to
be (cf. §2.2)

(i) a line u lying in a generating plane of §, representing an involution of line-pairs of S,
with a fixed vertex, and

(ii) a line v lying in a generating plane of 1, representing an involution of point-pairs of S,
with a fixed axis. We find then that the two bases (p,v) and (z,v) have the non-singular inter-
section matrix |

pe v} 10
[vu vv] - [0 1]' (7.1.1)
Also, if ¢ ~ pp + ¢v as above, then
= (pp+qviu=9p
and o= (pp+gqv)v=gq. ' (7.1.2)

Hence the characteristics p, q of the condition ¢ are the numbers of members the system (c) has in common
with a system (u) of 8-conics and with a system (v) of M-conics respectively.

When the characteristics p;, ¢; have been found for each of five simple conditions; (i = 1, ..., 5),
and provided always that these ¢; are simultaneously satisfied by only a finite number of complete
conics (cf. Appendix B on Halphen conditions), the (virtual) number m of complete conics that
satisfy the ¢, is given by 5
m= Il (P +4:v), ’ (7.1.3)
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where the product on the right s to be evaluated by use of the values of p*v# (a4 £ = 5) as given
in (6.5). Thus, for example, if ¢ is the condition that a conic should touch a given (complete)
conic £, then we find that ct = ¢cv = 2; so that

€~ 2n42v (7.1.4)
and hence 5 = (2p+2v)% = 3264.

The formula ¢ ~ 2t + 2v, which is the basis for this classical enumerative result, was originally
derived by allowing the assigned conic to degenerate into a 8-conic or an n-conic.

7.2. Remarks on the base for curves

We now give some brief and informal remarks about our choice of an equivalence base for
curves on Q. Consider then a continuous system (C(A)) of curves in Ay, such that, for a general
value of the parameter A the curve C(A) does not meet he surface ¢, while a particular curve
C(A,) of the system has a simple intersection Py with ¢. Further, let (D(A)) denote the continuous
system of curves on Q that corresponds to C(1). As A —>A,, the curve D(A) tends to a composite
curve of which one part is the proper transform, say D, of C(A,) — of order one less than that of
D(A) — while the other is a line » in the plane B which represents the neighbourhood of Py. This
line v must represent, as we know, the section of the neighbourhood of P, by a certain [4], say
H,, through the tangent plane 1, to ¢ at Py; and it may be shown, in fact, that H, is determined
(in general) by the condition that it must contain not only 7, but also the tangent plane at P,
to the surface generated by the continuous system C(A). By an obvious generalization, we see
that a curve C in Ay that meets & simply at each of k points gives rise on Q to a total transform whick consists
of the proper transform D of C together with k lines v.

We note that a general line of A; — representing a general pencil of conics of S, - corresponds
on Q to a twisted cubic curve p (its transform by |K|); and a chord of ¢, representing in A; an
involution of line-pairs of S, with fixed vertex, is represented on Q by a line . By what we have
said above, it follows that we have on Q the equivalence relation

p=u+2v. (7.2.1)

By duality, then, if ¢ is the twisted cubic on Q that represents the conics of a general range in S,,
we also have
q = 2u+tv. (7.2.2)

Thus (2, ¢) could also be taken as a basis for the equivalence of curves on Q; and this is in fact
the basis chosen by Severi [S, §51].

In our choice of (1,v), in preference to (p, ), we do not overlook the apparent anomaly that
_ the lines « are all confined to the fourfold 8, while the lines v are all contained in . This requires,
in particular, that virtual values have to be computed for the numerical symbols 45 and vn.
However, by noting such well known properties of pencils and ranges of conics as

p6=38, m=0, ¢g8=0 and ¢gn =23,
and by using the equivalence relations (7.2.1) and (7.2.2), we find at once that
w == -1, (7.2.3)

29-2
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7.3 Equivalence bases for thregfolds and surfaces on Q

In looking for possible equivalence bases for threefolds on Q, an obvious suggestion is that,
since (p, v) is a base for fourfolds, then a base for threefolds might consist of the triad p2, pv, v2,
these three varieties being represented in A; respectively by a general solid of A;, a quadric three-
fold V3, section of a quadric @ (through ¢) by a prime of A;, and a quartic threefold V3§, the
intersection of a pair of quadrics through ¢. As it happens, however, a threefold pv is equivalent
on Q to two members of a simpler equivalence system on Q, a system that we shall denote by
[V, of which any member is represented in A; by a solid T that meets ¢ in a conic £ and (as it
normally does) in one residual point P; in other words, we shall have the equivalence relation

pv = 2jV. : (7.3.1)
It is a simple matter now to verify the following result:
A variety iV on Q represents the system of conics of Sy that have a given line q as polar of a given point Q .

This is a self-dual system of conics, in agreement with the fact that the Cremona transformation t
carries the solid T into a solid T'of B, that meets V¥ in a conic £’ and a residual point P’. In the
interpretation of jiv, as given above, the repeated line whose image is P is the line ¢ of S,, while
the point Q is the vertex of the pencil of repeated lines that are mapped by the points of £.

To verify (7.8.1) we note that the V2 which represents a variety pv on A; meets ¢ in a prime
section °C# of this surface; and this °C4 can degenerate into a pair of conics ,, &, of ¢ which meet
in a single point P; and the pair of solids T, and T that join P to £, and £, respectively constitutes
a proper specialization of V2. This proves (7.3.1).

In advance of the formal analytical proof due to van der Waerden, to be given later in §11.2,
we now announce the following result:

A triad of varieties (p2, iV, v?) constitutes a complete equivalence base for threefolds on Q.
q

To appreciate the geometrical significance of this result, it is useful to indicate briefly the
alternative way in which it can be approached, the method pursued (in a generalized form) by
Severi [ S, §§39-41]. If V is a threefold on Q that is represented in A; by a threefold V, then we
may suppose that the equivalence class of V on Q depends essentially on the behaviour of V
relative to the surface ¢ that is being dilated into the fourfold n of Q. We are supposing, in other
words, that the ‘total’ transform of V on Q will consist in part of its ‘proper’ transform V
together with one or more threefolds, lying entirely on n, which correspond only to ‘neighbour-
hoods’, not explicit threefolds, of varieties common to V and ¢. We recognize, in particular,
three main types of behaviour of V with respect to ¢, namely (a) V may meet ¢ only normally,
i.e. in a finite set of points, or (5) V may meet ¢ in a curve, together possibly with some isolated
points, or (¢) V may contain ¢ entirely, possibly to a certain multiplicity. As the simplest cases
of these three types of behaviour, we consider those in which V is respectively

(i) asolid X of A; which meets ¢ in isolated points only,

(ii) asolid T of A; which meets ¢ in a conic £ and (as normally) in one further isolated point,
and

(iii) a quartic threefold which is the intersection V3§ of two quadrics @ through ¢.

These three represent threefolds on Q of the types we have denoted by p?, jiv and v2 respectively.
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The possibility that these three may constitute a base for threefolds on Q rests now on certain
plausible assumptions. It may be assumed, for example, that a threefold V of order n which meets
¢ in a curve which is equivalent on ¢ to s of the conics £, represents a threefold V on Q which is
equivalent to s of the varieties [V together with n—s varieties p2; or again, that a V of order z
which passes -tuply through ¢ will represent a threefold V on Q which is equivalent to a combi-
nation of ¢ of the varieties v2 together with n — 4¢ varieties p2. Under these tentative assumptions,
the equivalence classes of threefolds on Q which lie entirely on  would be expressible as differences
of threefolds on Q that are properly represented by (effective) threefolds in A;. These remarks
are perhaps enough to indicate the alternative approach to our result (to be formally proved in
§11.2 by the method of degenerate collineations) that p?, iv and v? are a éompletc base for
threefolds on Q. '

Before passing on from the above discussion of threefolds on Q, we have one further remark to
add about an important specialization of the condition manifold jiv. A solid T of A; which
passes through a conic k of ¢ may be such that its residual intersection with ¢ comes to lie on k
itself; in which case T touches ¢ at a point P of £. In this case, the condition manifold it represents
on Q will be a specialization of {iv which we shall denote by fiv. We verify easily that:

The specialization iv of IV maps the system of conics of S, that touch a given line at a given poznt of
this line.

The reader should be warned, however, that in some of the earlier literature the symbol jiv has
been used to denote the specialization that we denote here by jiv.

We now consider possible bases for the algebraic equivalence of surfaces on Q. From (a) and
(b) of §7, we can assert first that finite bases of the kind in question do in fact exist, and secondly
that the relevant base number is three, equal to that for threefolds (varieties of the comple-
mentary dimension on Q). As two members of a prospective base triad for surfaces, we naturally
choose a generating plane « of § and a generating plane B of 1) respectively. For the third member
we choose a surface, to be denoted by yx, which represents on Q the (self-dual) system of conics of
S, that have a common self-polar triangle. The surface y is represented in A; by a trisecant plane
of ¢ (and in B; by a trisecant plane of ); it is a Del Pezzo surface, projective model of a plane
curve-system C3[O,, O,, O,]; it possesses a closed hexagon of lines of which one triad of alternate
sides are lines # — the intersection of y with § — while the other triad consists of lines » — the inter-
section of y with n; and the six vertices constitute the intersection of y, with 3.

If g is the model surface on Q of a general linear net of conics of S, — representing a general
plane & of A; — then, as x is specialized to a trisecant plane ABC of ¢, g becomes specialized into
a surface y together with the three planes p that represent (on 1) the neighbourhoods of A, B, C

in A5. Thus ’ g=y +3B . (7.3.2)
and dually, if % is the model in Q of a general linear net of conic-envelopes of S,, then
h =y +3a. (7.3.3)
Finally, we now verify easily that the two triads (p2, iV, v?) and (e, %, B) have the non-singular
intersection matrix pla piyx  p2p 1 0 0
Vo [y vBl=|0 1 0 (7.3.4)
via vl viB 0 0 1

and this gives the following result:
The triad (o, %, B) is a complete equivalence base for surfaces on Q.
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7.4. Equivalence bases for threefolds, surfaces and curves on § and on 1

It now remains for us to select prospective equivalence bases for threefolds, surfaces and curves
on 3 and on 1, remembering that (by S, duality) bases for 8 will determine corresponding bases
for n. Consider then § which is the image manifold of the geometric variable consisting of an
unordered pair of lines (p,¢) of S, for which the vertex is required to be determinate when
? = ¢.In A;, §is represented by the primal M, each conic-plane x of ¢ representing a generating
plane o of 3, image of line-pairs of S, with fixed vertex; and in each such plane « there lies a conic
a of &n, which corresponds to the neighbourhood on M of a point of ¢. Apart from 87 itself,
which is an isolated threefold on §, the two most obvious types of threefold on & are as follows:

(i) a threefold J which represents the 8-conics of S, with vertex on a fixed line, and

(ii) a threefold K which represents the 8-conics that pass through a fixed point.
Plainly K = i is a specialization of p3.

We choose the pair (J,K) as our prospective base for threefolds on §; and, later (§11.3), it will be
proved that (J,K) is in fact a complete base.

As a complementary equivalence base for curves on 8, we take a line # and a conic 4 (since &
contains no lines »), and we verify then that the couples (J, K) and (x, 5) have the non-singular

intersection matrix
Ju Jb]_[0 1
[Ku Kb ‘[1 o] (7.4.1)

The couple (u, b) is an equivalence base for curves on 8.

Thus:

We now add some remarks about the threefolds J and K on 8, of which the former will be of
special importance to us in the sequel.

The threefold J is the model on & of the line-pairs of S, that have vertices on a fixed line p,
and it is therefore a rational scrollar variety generated by the oo! planes & each of which maps
the 8-conics of S, with vertex at a fixed point of p. These planes a, in fact, are those which meet
a fixed conic b (representing the 8n-conics with p as axis); and the conics ¢ which lie in these
planes o generate a surface p (cf. §2.2), the intersection of J with 8n. Further, J possesses a simple
directrix surface °R® — to be denoted by T~ which maps the §-conics that have p as one arm;
and it also possesses a family of simple directrix curves °C?, lying on p but not meeting 7, each of
which represents the 8n-conics, with vertex on p, that pass through a fixed point of S,. It follows
easily from this that:

The threefold J is a rational scrollar variety °RY of the most general type, with an [11] as its ambient
Space.

This can be verified directly from the parametric equations of J. J is represented in A; by the
cone °R3 that projects ¢ from a point P of itself, this cone being generated by the planes of conics
on ¢ that pass through P and having the tangent plane of ¢ at P as its directrix plane. (This
plane corresponds in A; to the directrix surface 1 of J.) The special significance of J is that it is a
base for planar threefolds on & (loci of oot planes a); for if C is any curve of order z in S,, then
plainly the model of the 3-conics of S, that have their vertices on C is algebraically equivalent on
3 to nJ. In particular, we have on § the equivalence relation

vé = 2], (7.4.2)


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

COMPLETE CONICS AND THEIR MODEL VARIETY 417

for v8 represents in S, the 8-conics that are apolar — as envelopes — to a conic locus s; and these
are the 3-conics with vertices on 5. On M the threefold v3 is represented by the variety generated
by conic-planes of ¢ that touch a prime section °C# of . . :

To exhibit 81 as a threefold which is algebraically dependent on J and K on §, it is tempting
to write, with the use of (6.3) and (7.4.2),

&n ~ (2n—v)8 ~ (2K —2]); (7.4.3)

but strictly this is an equivalence relation on Q (rather than on 8). However, since the equivalence
systems p3, vd and 18 are all effective on §, and since the equivalence v+n = 2y on Q is valid in
the narrowest sense — the existence of continuous systems connecting members of both sides — we
infer that (7.4.3) is also valid as an equivalence relation on 8. ’

We now come to the business of selecting a prospective equivalence base for surfaces on 8.

Our choice for such a base, later to be confirmed in §11.3, is the triad of surfaces{

: (o, 7, 0)
which we define as follows:

o is a generating plane of 8, model of 3-conics with a fixed vertex;

1 is a rational quartic scroll °R&, model of 8-conics with one fixed arm; this is represented in Ay
by a tangent plane t* of ¢; it possesses a directrix conic b; and its generators are lines u, each
representing 8-conics with a fixed vertex on the fixed arm; and

o, which is a surface ¥F*4, projective model of a curve-system C*[O,, O,], which maps §-conics
with one arm passing through a fixed point A, and the other passing through a fixed point B,
The surface o is represented on M by a quadric surface ®* which touches ¢ at a fixed point P
(being the residual section of M by a solid X through the tangent plane to ¢ at:P); and itissimply
generated by each of two pencils of cubic curves — represented on w* by its two systems of
generators — each of the cubic curves representing the 3-conics of the system for which one of the
arms is fixed.

We find, then, that the intersection matrix of the triad («,7,®) with itself is given by
o oT oW 0 0 1 _
at 1T t0|=|0 1 0 : (7.4.4)
0w TO OO 1 0 2 ’
which is of determinant — 1. Thus:
The triad (o, t, ®) is an equivalence base for surfaces on 8.

Finally, to carry over from equivalence bases on § to those on n, we only need to adopt a
suitable notation convention. This will be, namely, that if any type of variety on § has been
denoted by a certain symbol, as for example J, K, 7 or o, then the analogous (dual) type of
variety on 1 (if not already named) will be denoted by the same symbol with a prime, as, for
example, J', K’, t' or o'. Thus the bases for threefolds, surfaces and curves on m will be (J’,K’),
(B,’',®') and (v, a) respectively.

t For reasons given in our footnote to §11.4, we reject Severi’s assertion [S, pp. 317-319] that a minimum
base for surfaces on § is composed of four elements.
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7.5. Some special types of surface on & and on n

It is convenient at this stage to list some of the more significant types of surface on § or on n
and to exhibit their algebraic dependence on the respective bases (o,1,0) and (B, 1',0") for
surfaces on § and on 7. As usual, we need only describe those on 8, their analogues on n being
inferred by duality.

Consider then §, represented in A; by M, with its sub-variety 81 represented by the neighbour-
hood of ¢ on M. We make the following preliminary observation.

In the representation of & on M, the neighbourhood on M of a conic k of ¢ corresponds to a surface o
on 8n (cf. §2.2), each point of k giving rise to a generating conic b of ©. :

There is an analogous result for a surface p on 81 in terms of the representation of  on N in the
space B;. ‘

Further, as regards ¢, we observe that a surface pdn is the model of the §n-conics of S, that are
apolar to a fixed conic envelope ¢ in S,, such therefore that their axes touch e; whence, by
allowing e to degenerate into a point-pair, we obtain the equivalence relation

_ pn=2 ' (7.5.1)
valid on 1. Dually we have vén = 2p. (1.5.2)

A different equivalence classification for the surface o on & can be derived as follows. We recall
first that a surface ®, model of 8-conics of S, whose arms pass through fixed points A, B respec-
tively, is represented on M by a quadric surface ®*, residual section of M by a solid = through
a tangent plane t* of ¢. If X is made to vary about t* so as ultimately to contain a conic-plane
= of ¢, then @* will degenerate into n counted twice together with the neighbourhood on M of
the conic £ in which x meets ¢. By our first observation above, it follows then that @ degenerates
into a plane a counted twice together with a surface . Hence

@ =20+0 (7.5.3)

on §; and the result is compatible with the orders 1, 12 and 14 of a, o and o.

In a later section (§10) we shall have something to say about such obvious surface types as-
123, [ivd and v28; but here we restrict ourselves to the following types on 8.

(i) The surface & (of an co®-system): a 3F¢ = G4[—]. This maps the (unordered) pairs of tangents
to a conic envelope ¢ of S,. It is represented on M by a Veronese surface {* that meets ¢ in a
prime section °C?; and {* is the locus of the points of intersection of pairs of tangent planes to ¢
at points of °C¢. (Two tangent planes to ¢ meet always on M.) By making ¢ degenerate into a
point-pair we deduce the equivalence relation

{ =20 +a0. (7.5.4)

(i) The surface x (of an oot-system): a seroll °R® = C4[O3, O,] where O, is a neighbour point of O.
This maps the line-pairs of S, that correspond in a fixed harmonic homology; and it is mapped
on M by the quadric cone K* that joins a conic £ of ¢ to a point P of ¢ (not on £). By making the
vertex of the homology tend to a point on the axis (supposed to be kept fixed), we obtain the

equivalence relation
K=0o+1. (7.5.5)
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(iii) The surface x, (of an oo®-system): a *F'? = C4[O%). This maps the pairs of lines of S, that
correspond in a general (not harmonic) homology. It is represented on M by a Veronese surface xf
which touches ¢ along a conic £ and also at a point P not on £. We find that

K = 2« = 20+ 27. (7.5.6)

(iv) Tﬁe surface x, (of an co8-system): a "F*4 = C8[0%, O}, Of]. This maps the pairs of lines of
S, that correspond in a general collineation of S,. It is represented on M by a Veronese surface
k¥ that touches ¢ at each of three points. Here we find, by a degeneration of the collineation, that

K = 0+ 21, (7.8.7)

In stating the above results we have implied the existence and properties of certain types of
surfaces on M, in particular the two types of Veronese surfaces xf and «§. In this connection
we observe that M can be regarded as a (2, 1) projection — from a suitably chosen plane € — of
the standard model V§[8] of all the ordered line-pairs (or point-pairs) of S,. The ordered pairs
of lines of S, that correspond in any collineation of S, are mapped on V§ by the points of a
Veronese surface (of an co8-family); and in particular the coincident line-pairs of S, are mapped
by the points of a particular Veronese surface A, the diagonal surface of the representation. The
existence and properties of surfaces on M can then be derived from those of surfaces on V§ by -
projection from ¢, taking into account any special relations that the latter may have to the
diagonal surface A and to the plane of projection &. The stated properties of *, k§ and x§ have
all been confirmed in this way.

8. SIMPLY INFINITE SYSTEMS OF COMPLETE CONICS

If =(m, n) is any irreducible system of complete conics which is of indices m, n (the numbers of
members of the system that pass through a given point or touch a given line), then we may
suppose, in view of the results given in § 7.1, that the image curve of £(m, n) on Q belongs to the
equivalence system mu + nv, where m, n are integers and (, v) is our base for curves on Q. We shall
denote this image curve by C(m, n). Since « and v are lines, then C(m, n) is of order m + n; and by
(7.1.7) it meets § and 7 in sets of 2n—m and 2m —n points respectively, provided only that these
numbers are non-negative so that C(m,n) does not lie on  or 7.

C(m, n) is represented on A; by a curve G™, of order m, which meets ¢ in 2m —» points; and in
By by a curve C* which meets { in 2n—m points. The lines u = C(1,0) and v = C(0, 1) are
represented respectively in A; and in Bg by a chord of ¢ and by a chord of .

For (m,n) = (1,2) and (m,n) = (2,1) we get the two families of twisted cubic curves on Q
that map ordinary pencils and ordinary ranges of conics in S,. Curves of the first family are repre-
sented in Ay by lines not meeting ¢ and in B; by conics trisecant to ; while those of the second
family have analogous representations in B; and in A;.

For (m,n) = (1,1), we get the co-family of conics on 2, unisecant to each of § and u, that map
the pencil-ranges (double-contact pencils) of S,. These conics are represented in A; by the lines
unisecant to ¢; but among them are oo® special members, images of the four-point contact pencil-
ranges of Sy, which each meet 7 in one point and are represented in A; by the lines which each
meet ¢ in a point and lie on the tangent cone to M at that point.

Some special interest attaches to self-dual families of complete conics, those for which m = n.
Each of these is mapped on Q by a curve of order 2m, m-secant to each of § and n; and it corre-

30 Vol. 306. A
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sponds in A4 to a C™ which is m-secant to ¢, and in B, to another C™ which is m-secant to . The
simplest example of a self-dual family is the pencil-range (1, 1). The next simplest self-dual
family is the quadratic system Z(2, 2), now to be considered.

The quadratic self-dual family £(2, 2). This is the system that is represented in A, by a general
conic bisecant to ¢, and on Q by a curve °C# that meets each of § and 7 in two points. We find,’
then, that the conics of £(2, 2) all have double-contact with each of two fixed conics s, s'; and they
form, in fact, one of the three irreducible systems of conics having double contact with s and s’,
each of these three systems being associated with one vertex of the common self-polar triangle of
s and §’. Thus, in general, the equation of a system (2, 2) can be taken in the form

2 2
ax?+by? +cz*+ (my +nz)? = 0, with -—”_l—&-}--c-%—a+1 = 0. (8.1)
If (8.1) is written in the alternative form
| Ryt (g tr)t=0 with S+ Ly
yraTuy - b—a' c—a a
we find that £ —b—:—aﬁ,
. v c—am

which shows that the chords of contact of a conic of (2, 2) with the two fixed conics s, s’ corre-
spondin aninvolution of lines through the reference point X. In terms of non-Euclidean geometry
with one of s, 5" as absolute conic, the three systems X (2, 2) defined by s and s are the systems of
Jocal circles of the other conic of the pair.

It may be noted incidentally that the conics of S, that have double contact with a fixed conic s
are mapped in A; by points of the cone projecting ¢ from the image point of s. Thus any two
such cones, with distinct vertices, will meet in a triad of conics, bisecant to ¢, each representing a
system (2, 2). '

9. DOUBLY INFINITE SYSTEMS OF COMPLETE CONICS

An oo*-system of conics may mean, a priori, either a system of conic-loci (or envelopes) defined
by a given surface in the space Ag (or B;), or a system of complete conics defined by a given
surface on Q; but only in the latter case does it come directly within the scope of our enumerative
geometry based on Q. Supposing, however, that a system T of the former kind is defined, for
example, by an irreducible surface F, in A; then we can replace it, for our purposes, by the
associated system % of complete conics, where  is the system defined by the proper transform F on
Q of F, in Ay, provided only that F, is not the surface ¢ in A; that maps the repeated lines of S,.
More particularly, F is the projective model, birationally equivalent to F,, of the sections of F,
by primals of the system [K| that represents the system of prime sections of Q.

We now recall (cf. §7.3) that a base for surfaces on Q consists of a pair (a, B) of planes repre-
senting respectively 3-conics with fixed vertex and m-conics with fixed axis, together with a
surface 3 — a sextic Del Pezzo surface - representing a (self-dual) family of complete conics that
have a fixed self-polar triangle. This means that every surface on Q is algebraically equivalent
to a combination po + gy + 7B, where p, g, r are non-negative integers. In what follows we propose
to record equivalence valuations of this kind for the image surfaces on Q of a selection of important
co?-systems of conics; and we begin with the basic surfaces p?, yv, pv2 and v3 on Q.
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A surface p3 on Q, being represented in A; by a plane not meeting ¢, arises from a general -
linear net of conics (conic-loci) of Sy; and, dually, a surface v® arises from a general linear net of
conic-envelopes of S,. By (7.3.2) and (7.3.3) we have the equivalence relations

pPB=x+38 and V¥i=y+3a. (9.1)

On the other hand, a general surface pu2v on Q is represented on A; by a quadric surface which
meets ¢ in four points; and it is therefore equivalent on Q to 23— 4p which reduces by (9.1)
to 2y + 2B. Whence, and by duality, we may write

: p2v =2¢+2p and pv? = 2y+ 2. (9.2)

Also, from its representation in A, we find easily that p2v is a surface 4F3*[11], projective model of
a plane curve system C35[0%, O3, O, O,, O;]; and there is a similar result for pv2.
From (9.1) and (9.2) we deduce that p3, p?v, pv? and v3 are connected by the virtual equi-

valence relation
2p8 — 3pv 4+ 3puvi—2v3 = (p—v) (2p2—pv+2v3) ~ 0. (9.3)

We now observe that relations of equivalence on §, and in particular those relating to surfaces
on & such as we found in § 7.5, will be valid also on Q; but equivalence systems on & will generally
be contained in more ample equivalence systems on Q. Thus, for example, a surface ® on 3,
represented in A; by a quadric surface @* which lies on M and touches ¢, will be equivalent on
Q to the surface that is represented in A; by a general quadric surface that touches ¢. Further,
since this latter surface can degenerate into a tangent plane t* together with a plane not meeting
¢, we deduce (using (9.1)) that, on Q, i

o=1+(x+3B). (9.4)

We next look to find the equivalence valuation on Q of a surface t (a rational quintic scroll)
which corresponds to a tangent plane ©* of ¢ in A;. The plane t* has four coincident inter-
sections with ¢ at its point of contact P, and it is therefore a specialization in A; of a trisecant
plane of ¢ which has come to have four coincident intersections with ¢ at P. The surface y on Q
which corresponds to the trisecant plane of ¢ will then have degenerated into a surface t together

with the plane corresponding to P. Thus :
x=1+B. , (9.5)

To confirm this we consider the net of conics of S, represented by ¥, taking this to be the net of
conics with XYZ as common self-polar triangle, and taking our specialization to be that effected
by varying Z continuously so that it comes to lie on XY. Thus, if Z’ is the point (1, 1,¢), then the
net of conics with XYZ’ as self-polar triangle has locus-equation

A(z—ex)2+p(z—ey)t+v22 =0

and we find that the coordinates a, b, ¢, f, g, % of conics of this net satisfy the equationsa = — gé,
b = —fe, h = 0; whence, as €0, we see that the locus equations of the specialized net are
a = b = h = 0. These represent the -conics with z = 0 as a fixed arm. On the other hand, the

envelope equation of the net is
A+ v +v(u+v+ew): =0

and the equations satisfied by the dual coordinates 4, B, C, F, G, H of conics of this systerh are
C =ve?, F = ve, G = ve, whence, as ¢ 0, the envelope equations of the specialized net are

30-2
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C = F = G = 0. Thus the envelopes of the specialized net are all the point-pairs of the line XY
Thus the equivalence relation (9.5) is confirmed.
From (9.4) and (9.5), and by duality, we may now write

t=x—-B 1tT=yg—o (9.6)
and 0 =2+2B o =2yx+20. (9.7)

By use of these, in conjunction with our earlier relations (7.5.3)—(7.5.7), we obtain the results

p=2x+20—2B, ©=2y—2ua+2B, ' (9.8)

{ =0 =2y +20+28, (9.9)

k=yx+a—B, ¥ =yx—a+p, (9.10)

Ky =254+ 20—28, x; =2¢—2a+28 (9.11)

and Ky = Ky = 4. (9.12)

It will be noticed, in particular, that the surfaces { and {’, though they lie on § and on n respec-
tively, belong to the same equivalence system 2y + 20 + 2B on Q; but we shall see shortly that this
equivalence system contains surfaces which are irreducible and do not lie on either § or 7.

9.1. Self-dual doubly infinite systems

We now make a diversion to consider some of the co®-systems of conics that have the special
property of being self-dual. A self-dual system of complete conics is one whose image surface on Q
is represented on A; and on B; respectively by projectively equivalent surfaces F and F’, such
that F' is related to ¥ in exactly the same way as F is related to ¢. Its image surface on Q will
belong to an equivalence system of the form m(« + B) 4+ ny, where m, n are non-negative integers.
The simplest example of such a system, of course, is that of conics with a common self-polar
triangle, represented on Q by a surface y, (in A; by a trisecant plane of ¢, and in B; by a trisecant
plane of ). For each of the other systems X to be considered we shall write X = m(a + B) +ny if
m(o + B) +ny is the equivalence valuation of its image surface on Q.

A system 2 = o+ B +7y. We define this to be the system of (complete) conics of S, such that its
model in A; is a quadric surface § which meets ¢ in a conic £ (not meeting ¢ in any other point
nor touching ¢ at any point of £). We find then, easily, that its model &' = t(§) in B; is also a
quadric surface, and that &’ meets  in a conic. Since & can degenerate into a conic-plane of ¢
together with a plane meeting ¢ in two points, we deduce that X = o+ + as stated.

A construction for a system X of general type is as follows. We choose a triangle XYZ in S,;
then a proper conic g touching ZX and ZY at X and Y respectively, and finally a homographic
correspondence (P, P’) on XY with X and Y as united points. Then if U, V are the points where
ZP’ meets the tangents to g from P, the pencil of conics that touch PU and PV at U and V
respectively generates, as P varies, a system X. The generating pencils of conics are mapped on
the generators of one system of §, and X contains a second system of generating pencils, mapped
on the generators of the other system on , obtained by interchanging the roles of P and P’. The
8-conics of T are the pairs of tangents to g from the points of XY ; its n-conics are the point-pairs
(U, V), these being the pairs of points in which lines through Z meet a second conic g’ touching
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ZX and ZY at X and Y; and the two 8n-conics of T are those with ZX, ZY as axes and X and Y
as vertices respectively. The equation of Z can be taken in the form

(x—py)*+pz2 +v(x - kuy)* = 0

where s, v are the variable parameters and  is the modulus of the homographic correspondence
(P, P").

The special case in which & is a quadric cone arises when £ = —1; and in this case X is pro-
jectively equivalent to the system of conics with a fixed auxiliary circle.

A system T = 2y + o +B. We define this to be the system of conics that is represented in A; by
a rational normal cubic scroll R that meets ¢ in a conic and two further points. We verify then
that ©(R) — the model of R in B; — is another cubic scroll R’ which meets ¥ in a conic and two
further points.

Since this system is of rather less interest in itself, we confine ourselves to giving its reduced
locus-equation in the following form:

Olla+A) 2+ B+ g2+ (c+A) 22 +{x(a+A) x+ b+ A)y—[at(a+A) + (b +A)]z}2 = O

where A, 6 are the variable parameters of the system and g, b, ¢, , f, £, 7 are constants. For fixed
A, this equation defines a double-contact pencil, representing a generator of R.

A system T = 2y + 20, + 2B. We define this to be a system of conics — general of its kind — that
is represented in A; by a Veronese surface € that meets ¢ in a prime section C of this surface.
We assume in particular, that C is irreducible and that € does not lie on the chord-locus M of ¢.
We verify easily, then, that t(g) — the B;-model of Z — is also a Veronese surface, and that this
meets { in a prime section.

Before proceeding further with this system Z, we shall prove the following lemma, a result that
could not easily have been foreseen.

LemMA. If € is a Veronese surface in Ay that meets & in one of its prime sections C (an irreducible °C#),
then € is in perspective with § from a point of Ag.

Proof. Let II be the prime that cuts C on ¢. Our proof will consist in showing that there exists
a homology of A;, with II as its axial prime, that carries ¢ into €, the vertex of this homology
being then the required centre of perspective for ¢ and €.

We begin, then, by remarking that there exist many self-collineations of A, that carry ¢
into € — this is true for every pair of Veronese surfaces in A; — and we denote any one of these
by w. Further we denote by C, the prime section of ¢ that is carried by w into C. If ¢ is any self-
collineation of A; that leaves ¢ invariant — briefly a self-collineation of ¢ — then wo also carries
¢ into £; and we propose to show that ¢ can be so chosen that wo leaves every point of C invariant.
This, namely, would show that wo induces the identical collineation on II, being therefore a
homology of A;, as was required to be proved.

What is required, then, is to show that ¢ can be so chosen that it carries each point of G into
the point of C, that is then returned by @ to the same point of C; in other words, we have to be
able to choose o so that it carries C into C; and induces a preassigned homography between the
points of C and those of C;, the inverse of that induced from C; to C by w.

Consider then the ordinary representation of ¢ on a plane S,, in which C and C, are repre-
sented by conics ¢ and ¢; of S,. We remark (i) that all the self-collineations of ¢ arise directly from
self-collineations of S, (and conversely), and (ii) that every homographic correspondence
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between points of ¢ and points of ¢, is induced by a unique self-collineation of S, that carries ¢
into ¢;. By virtue of (i) and (ii) it follows that there exists a unique self-collineation o of ¢ that
carries C into G, and induces the required homography between these two curves; whence, by
what we said previously, wo is a homology of A;. This proves the lemma.

We now return to the system of conics 2 that is represented in A; by the Veronese surface €
meeting ¢ in the prime section C. By the lemma, it follows that ¢ and ¢ are in perspective from
a point V of A, (external to both surfaces); so that € lies on the threefold cone V(¢). If ¢ is the
.conic of S, whose image point is V, then V(¢) is the A;-model of the conics of S, that have double-
contact with ¢. Hence:

The conics of X all have double-contact with a fixed conic ¢ of S,.
Let ¢ be given by the equation ‘
c:xt+yt422 =0, (9.1.1)
We find then that the locus-equation of = can be taken to be

Z: k(Ax+py +vz)2 + (a2 + fu +y12) (a2 +y2+22) = 0 (9.1.2)

where A, u, v are (homogeneous) variable parameters and %, «, 8, v are constants.
The locus (9.1.2) becomes the repeated line Ax +puy +vz = 0 if aA? + fu2 +yv? = 0; whence
the repeated lines of X, axes of its 11-conics, are the tangents to the conic ¢, given by

o GHpts =0 ' (9.1.3)

Further, the locus (9.1.2) is a line-pair (as distinct from a repeated line) if
k(A% 4 4% +v2) + a2+ fu +yv? =
the equation of this line-pair being _
(Ax +py +vz)2— (A2 4+ p2 +12) (A2 + 42+ 22) = 0.

From this it follows that the line-pairs (§-conics) of T are the pairs of tangents to ¢ from the points
of the conic ¢, whose equation is

e (ko) 2+ (k+B) 2+ (k+y)2=0. ' (9.1.4)

It will be noticed, then, that ¢, touches the tangents to ¢ at the points in which ¢ is met by ¢,.
The 8n-conics of Z, then, are those with the above four tangents as axes and their points of
contact with ¢ as vertices. Finally, to complete the picture, we remark that the point-pair on
each tangent to ¢, that makes it into an n-conic of X is that in which the tangent meets ¢.

For any further discussion of the geometry of Z, we need to investigate the properties of the
o0? conics £* that lie on g, each of which meets ¢ in two points of C. Each such ! maps a quadratic
(self-dual) ool-system of conics of  of the kind discussed in §8; and we shall denote any such
system by o. Each ¢ is defined by imposing a linear condition pA + g +rv = 0 on the parameters
A, p, v in equation (9.1.2) of X; and (by §8) it is one of the three irreducible systems of conics of
S, that have double-contact with each of two fixed conics of which one, in the present case,
must be ¢ (which has double contact with all the conics of X). Let ¢(p, ¢, 7) be the other conic which
has double contact with the conics of 6. We find then that the equation of ¢(p, g,7) is

o(p,q,1): ( +;+7)[k(’;2+3; ;)+(x2+y2+22)] (!”‘+%+'—;)2=0. (9.1.5)
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From this it appears that the point (g, ¢,7) of S, is a vertex of the common self-polar triangle of ¢
and ¢(p, ¢,7), and that o consists precisely of the conics that have double-contact with each of ¢
and ¢(p, g,7) in such a way that their chords of contact both pass through (9, ¢,7). We now leave
it to the reader to investigate further the properties of the co?-system of conics ¢ (p, ¢,7), a system
of the same type as Z and closely associated with it.

One final remark concerns the equivalence valuation 2y + 2« +2p of Z. This follows, for
example, by allowing ¢ to degenerate (in A;) into a pair of quadric surfaces which each meet ¢
in a conic and have in common a line through the point of intersection of the two conics.

Conics that have four-point contact with a fixed conic s. We comment here only briefly on this system
Z because, as we now show, it is a specialization of the previous case, of the same equivalence
valuation 2y + 20 + 2B. Let O be the point of A; that maps the fixed conic s. Then the A;-model
of X is easily seen to be the cone O(C), where G is the section of ¢ by the polar prime IT of O
with respect to the cubic primal M; and this quartic cone is a degenerate Veronese surface
through C. The Q-model of this cone is a surface F6, projective model of a curve system
C8[O¢, 0%, 03, 0], where O, O,, O, are all in the first neighbourhood of O; and F1¢ meets 8n
(abnormally) in a curve of the system 2z + 25, having no further intersection with & or 7.

A system T = 4y. Our last example is that of the co?-system Z of conics of S, whose Az-model
is a Veronese surface ¢, not lying on M, which touches ¢ at three points. If ¢ is mapped on a
plane & by means of all the conics of &, then quadrics @ through ¢ will meet € in curves mapped on
- 1 by quadrics with three fixed double points, a system equivalent over a quadratic transformation
of & to the system of all conics of n. Thus (g) — the Bs-model of Z — is another Veronese surface;
and this touches V¥ at three points. Thus X is a self-dual system. The Q-model of X is a surface
F24, model of a plane curve system C8[O%}, O%, O%]; and by allowing ¢ to degenerate into a triad of
tangent planes of ¢ together with the plane which meets these in lines, and by using (9.5) and
(9.1), we deduce that T has the equivalence valuation 3t + (x +38) = 3(x—B) + (x +3B) = 4y.

A system such as Z can be constructed as follows. Let s be a fixed conic of S; and XYZ a fixed
triangle; and take Z to be the co?-system of conics of the form w(s), where w is a variable collinea-
tion of S, of the form =, y=py Z=vz
with X, Y, Z as triad of united points. It is easy to verify, then, that (in general) X has, as its
A;-model, a Veronese surface € that touches ¢ at each of three points.

If F2¢ is the Q-model of Z, then it may be verified that F2* touches & along three conics g;
(i = 1,2, 8) and touches n along three conics 4; (i = 1,2, 3) such that these two triads of conics
are the sets of alternate sides of a closed hexagon of conics whose vertices lie on 8. Each g; has
double contact with a conic a; (i = 1,2,3) of 81 at a pair of vertices of the hexagon; and,
similarly, each k; has double contact with a conic &; (i = 1,2,38) at a pair of vertices of the
hexagon. -

Now consider the special case of the above construction for which s is taken to be a line-pair.
The resulting family of conics — say £ — consists entirely of 8-conics; so that it is no longer self-
dual. Further, it can now be characterized in another way, namely as the aggregate of pairs of
lines that correspond in a fixed collineation w with X, Y, Z as united points. Thus Z is a system ,
that was previously discussed by us ((iv) of § 7.5) in its role as an co® system of §-conics. Thus the
equivalence system 2y + 20+ 2B of doubly infinite systems of conics contains members (irre-
ducible systems) of which some are contained in 3, others in 1, and still others neitherin § norin .
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10. TRIPLY INFINITE SYSTEMS OF GOMPLETE CONICS

We are concerned here essentially with threefolds on Q, for which, as noted in §17.3, the triad
12, fiv, v? is a complete equivalence base. However, in connection with equivalence bases on
8 and on 1, we were led to consider two other important threefolds on Q, namely those which we
denoted by J and J’, of which J lies on 8§ and maps 8-conics with vertices on a fixed line of S,
while J’ lies on n and maps n-conics with axes through a fixed point. Further, we proved in §7.4
that each of J, J' is a rational scrollar variety °R§ of general type, generated in the first case by
planes o and in the second by planes B (joins, in each case, of corresponding points of homo-
graphic ranges on a conic, a twisted cubic and a rational normal quartic curve). In A, J is
represented by the cubic cone of conic-planes of ¢ that pass through a fixed point of this surface,
while J’ is represented by the total neighbourhood of a conic of ¢.

We observe first, then, that when a general solid of A;, representing a threefold p? on Q, is
specialized into a solid which meets ¢ in a conic £, then p? is specialized into a threefold |
together with the threefold J' that corresponds to the total neighbourhood of & in A,. With
duality, this gives the pair of formulae

p=@v+]J’ and vE=v+]. (10.1)

Further, as already noted in §7.4, the neighbourhood of £ on M represents a surface o (cf. §2.2),
the intersection of 8n with J'; whence, and by duality, we have (on Q) the equivalence relations

Jé=0 and Jn=p. (10.2)
Recalling now that pv = 2{iv, we have the virtual equivalence formula
3 ~ (2v—p) (2p—v) ~ —2u2 4 10V — 2v2 (10.3)

and from this and (10.1) we deduce the (virtual) relations
6u? ~ 8n+2J 4 8J',
6 ~ on+2J +2J, (10.4)
6v? ~ 8 +8J+2],

which relate 8n, J and J’ to p2, jiv and v2.
From (10.4) we deduce the relations

2u8 ~ dn+2] and 2vny ~ dn+2]'; (10.5)
and these lead again to (7.4.2) and its dual, namely
v =2] and pn=2J. (10.6)

We come now to the second objective of this section which is to exhibit the internal structure
of each of a series of important threefold systems of complete conics. Thus, for example, if =
is the system of complete conics that is mapped on Q by a general threefold p2, then we would
aim to give some description of p? and of its degeneration varieties — the surfaces p28 and p2y
and the curve p%3n — together with some indication of the inter-relations of these varieties.
As most of these investigations of threefold systems are somewhat long and specialized, we shall
give at this point only accounts of a few typical cases, relegating the others to an appendix
(Appendix A) for the record. We start now with:

The system = = p®. In this case, as in most similar cases, we first draw up, as preliminary
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information, a table of the virfual orders, computed by the method explained in §6, of the relevant
varieties on Q. If, as may happen, some of the varieties are multiple intersections, the corre-
sponding entries in the table have to be interpreted by detailed examination. In the present case
the table for p? is as follows:
u n wn n¥n
virtual order 23 19 4 8

We observe, now, that p? maps the complete conics of S, that are apolar to a general pair of
conic-envelopes; and it is represented in Ag by a general solid of Ay, say T, which meets ¢ in
four points Py, ..., P,. The cubic primals of |K| meet T in the complete system of cubic surfaces
of T that pass through Py, ..., P;; and hence:

The general threefold p2 is a V3¥[18), projective model of the complete system of cubic surfaces through
Jfour points of a solid T

The intersection p25, being represented in Ay by the four-nodal cubic surface in which T
meets M, is found to be a surface F}°, projective model of the system of plane quartic curves
through the six vertices of a complete quadrilateral. The surface p*n consists of the four planes f
that represent the neighbourhoods of Py, ..., P, in Ag; and finally the curve p®n consists of the
four conics b that lie in the four planes B in question. In the plane representation of F}?, the four
conics b correspond to the sides of the aforementioned complete quadrilateral.

In Appendix A, we give discussions analogous to the above, of the systems of complete conics
that are mapped on Q by the following threefolds: (i) %, the model of complete ‘circles’ of S;
(ii) the variety pv; (iii) the variety iv (conics that pass through a fixed point and touch a fixed
line, not through the point); (iv) the threefold jiv; (v) the threefold fiv (conics that touch a
given line at a given point).

Conics that have double-contact with a fixed conic g. Let D denote thls system of conics and let 4
denote its threefold image on Q. Further let 4* be the Ai-model of D; and let G and G* be the
image points of g in Q and in A; respectively. Then d*, as previously noted, is the quartic three-
fold cone G*(¢); and this implies that 4 is simply generated by the o0 conics on Q (representing
pencil-ranges) that pass through G.

Since p?, fiv and v? are a base for threefolds on Q, we may write

d=ppd+giv+rv? (10.7)

where g, ¢, r are integers; and further, since D is plainly a self-dual system, we shall have r = p.
To evaluate p( = r) and ¢, we multiply (10.7) symbolically by o and by y in turn and then evaluate
directly (as numbers) the condition products that arise. We find readily that

do=dy =1, a(ug’ W’ Vz) = (15 0, 0) and X(u"’, ®> Vz) = (15 1, 1);
and from these values there result two equations for (= r) and ¢ which give p =7 =1 and
¢ = —1. Hence '
d~p2—jfv+vi . (10.8)
With the permissible substitution of 4uv for jiv and the use of (6.5), we find that

dpd = (WP -V +v)pd =4

31 Vol. 306. A
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in agreement with the fact that there are in general four conics that pass through three given
points and have double contact with a fixed conic.

Or again

d* = (u*—fuv+v2)%p = 6,

in agreement with the fact that there are in general six conics that have double contact with
each of two fixed conics and pass through a given point.

The relation (10.8) can also be obtained directly by specializing g to a proper line-pair g
(a 8-conic), in which case the resulting specialization of the system D consists of

(i) the ood-system of conics that touch the arms of Z, and

(ii) the oo3-system of n-conics whose axes pass through the vertex of z.
The former of these systems is mapped on Q by a variety ¥? = v? and the latter is mapped on a
threefold J’; and this gives the relation

d=v:+]'

on €. Since, by (10.1), J’ = p2—jiv, this gives d ~ p?—iv +v2, which is (10.8).

The §-conics of D are the pairs of tangents to g, a system mapped on Q by a surface{ (cf. §7.5(1));
and dually the n-conics of D are mapped on a surface {'; i.e.

ds=¢ and dn=U. (10.9)
Finally, the n-conics of D are mapped on a rational octavic curve of 8n; in fact
dén = 2a+2b. (10.10)

Conics that have three-point contact with a fixed conic g. Let E denote this (self-dual) system of conics;
let £ denote its model threefold on Q; and let G and G, denote respectively the image points of
gon Qand in A;.

Since the conics that have three-point contact with g at a fixed point P form the linear net
through three consecutive points P, P;, P, of g, it is convenient to consider first in general the
second order curve elements &, of S,, sets of three consecutive points of S,. The conics that contain
any such &, form a linear net, a specialization of that mapped in A; by a trisecant plane of ¢.
It is known, then, that the specialized net is mapped in A; by an ‘osculating plane’ of ¢, i.e. by
a plane that contains a triad of consecutive points of ¢ (an &, of ¢); also that there exists thereby
a birational correspondence between the cof-aggregate of &, in S, and the oo*-aggregate of
osculating planes of ¢ (cf. Semple (1954), pp. 26 and 32). Thus the system E, being generated by
oot of the special linear nets, each containing g itself, must have as its A;~-model the threefold
generated by the co! osculating planes of ¢ that pass through G,. We now find readily, however,
that any osculating plane of ¢ that passes through G is the join of Gy to a tangent line of the
curve C in which ¢ is met by the polar prime II of G,, with respect to the cubic primal M of A,.
We assert then:

The Ag-model of E is the sextic threefold cone Go(T), where T is the (sextic) surface of tangents to
the curve C, section of & by the prime II. ’

Since each plane joining G, to a tangent ¢ of C meets ¢ in two consecutive points of ¢ on ¢
and in a third point of ¢ consecutive to these two, it follows that C must count triply as a curve of
intersection of G¢(T) with ¢. This can be verified analytically.} Thus, since C is equivalent on

1 The fourfold cone projecting G,(T) from a generic point of A; meets ¢ (normally) in a curve of which C is
a triple component.
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¢ to a pair of conics, it can be argued that G((T) is equivalent, iz Ay and relative to ¢, to a combi-
nation of six solids of A; that each meet ¢ in a conic, and hence that its transform € on Q will be
equivalent on Q to 6fiv. Thus

£ ~ 6. (10.11)

We may remark, in passing, that the Q-model of conics that have three-point contact with g -
at a fixed point is a surface 3 * (a specialization of the general y) that is the projective model of
a system of plane cubics with three consecutive (but not collinear) base points. Each such y*
possesses therefore a binode. This lies on 8n; and the six intersections of the general y with dn
coincide for g * in this binode. The 8-conics of E are those for which one arm touches g while
the other passes through its point of contact, and we find, by a degeneration of g, that their
Q-model is a surface of the equivalence system 2t + 4a = 2y — 2 + 4« (of order 14) on 8. Also,
dually, the n-conics of E have an Q-model of the system 2y — 20 +48; and the dn-conics of E
are represented on Q by a curve of the equivalence system 2a + 2b.

To confirm the equivalence valuation (10.11) of &, we now proceed, as in the previous case,
by computing $ and ¢ such that

€~ pud4giv+pv2.

To do this we multiply the above equation symbolically by a and y in turn, using our previous
evaluations a(p2, fiv, v?) = (1,0,0) and y(p? v, v?) = (1, 1, 1), so that only ae and ye remain to
be evaluated. Since a §-conic (or 8n-conic) cannot belong to E if its vertex does not lie on g,
we deduce that ae = 0; from which it follows that = 0. Dually, also, we will have fe = 0
Further, since xe = (x + 3B) & = p% = p’ it follows that xe is equal to the number of conics that '
have three-point contact with g and pass through three given points; and this number is six,
the number of inflexional lines of a trinodal plane quartic curve. This g1ch ¢ = 6, whence
€ ~ 6fiv as stated in (10.11). :

"~ We now note finally that, by use of (10.11), the computed virfual orders of the surfaces &8
and en are each found to be 42; whence the surfaces — each of order 14 — which map the 3-conics
and the n-conics of E must count triply in €8 and in en respectively. Similarly, since the computed
order of the curve €3y is found to be 48, it follows that the octavic curve, of the equivalence
family 2a + 26 on Q, that maps the dn-conics of E must count sixfold in the intersection €87.

1i. THE METHOD OF DEGENERATE COLLINEATIONS

We now come back to the general problem of solving, in a definitive way, outstanding questions
relating to the discovery of minimum algebraic equivalence bases for sub-varieties on Q and on
its subordinate varieties 8,  and &n. The general method to be used — referred to usually as the
method of degenerate collineations — is that originally devised by van der Waerden, and applied by
him in particular to solve the problems of bases for fourfolds and threefolds on Q [W, §§2, 3].
In what follows we shall first give a detailed analysis of van der Waerden’s method and results,
and we shall then apply his methods, in so far as may be necessary, to solve other outstanding
problems of the base, in particular to those on the model varieties subordinate to Q.

As regards our previous remarks on the present problems, we recall

(i) that bases for curves and surfaces on 3n are already known (cf. §2.2);

(ii) that, in §§7.1-7.4, we put forward prospective bases for fourfolds and threefolds on Q;

and then, on the basis of assumptions () and (§) of §7, we selected complementary bases for

31-2
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curves and surfaces on Q, verifying the non-singularity of the two relevant intersection matrices;

(iii) that, for geometry on 3, we first chose a prospective base for threefolds; and then, again
on the basis of assumptions (a) and (b), we selected prospective bases for curves and surfaces on
8, and again verified the non-singularity of the two relevant intersection matrices; and

(iv) that bases on 1 will follow from those for & by duality. Essentially, then, what remains to
be done is to confirm that the proposed bases for fourfolds and threefolds on Q, as also those for
threefolds and surfaces on §, are in fact complete minimal bases; and we do this by using the
method of degenerate collineations.

Suppose then that I, is any irreducible system of complete conics of S,, of dimension d
(1 < d < 4). We shall use the same symbol Z; to denote also the model of the system, whether
this be envisaged as a one-way d-fold on Q or as its abstractly equivalent two-way d-fold on the
two-way model ¥~ of complete conics (cf. §2). We base operations on a set of equations that
completely define Z,; and we take these for convenience to be its two-way equations in the form

S (@005 @015 @115 Bg2s @135 Gass bogs bo1s D11 boas 0125 by) =0 (A=1,...,5), (11.1)

these to include, of course, the two-way equations of #” (namely (2.1)). We suppose now that we
have chosen a one-parameter family of self-collineations of S,, to be denoted by w(e), where €
is the parameter, such that w(1) is the identity collineation, w(¢) is non-singular if € # 0, while
®(0) is a singular collineation. For ¢ # 0, w(€) carries Z; into a system Z,(¢); and, as €0,
Z,4(€) (as is well known) will tend to a well defined system Z;(0) — possibly reducible — which is
by definition algebraically equivalent to Z;. We now wish to find what can be said about the
irreducible component systems of Z;(0); and to do this we proceed as follows.

First, by use of the equations of w(e), we form the equations (analogous to (11.1)) of Z,(e);
and we then denote by (E) the set of equations derived from those of Z;(€) by putting € = 0.
From the general theory of algebraic correspondences (see, for example, Hodge & Pedoe 1952,
ch. XI) we know that the equations (E), though they will not in general suffice to define Z,(0),
will nevertheless be satisfied by the conics of £4(0); and they give us therefore useful information
about the irreducible component systems of Z;(0).

Before proceeding to apply the above method, we recall a result, known as the moving lemma,
of which we shall be making use in what follows. A detailed statement and proof of the general
form of this result are set out on pp. 190-191 of Hodge & Pedoe (1952). The content of the
lemma, as we apply it here, can be stated as follows:

THE MOVING LEMMA. Let V,, be a non-singular algebraic variety, and let V, and V, be effective
sub-varieties of V,, such that a+b > n, and V is irreducible. Further let the ((point-set) intersection Vg AV}
be of abnormal dimension (i.e. of dimension > a+b—n) for sub-varieties of V. (This includes in particular
the case in which V., is contained in V,.) Then there exists on'V,, a virtual variety U,, a difference UG — UD
of effective varieties, such that (i) U, ~ V, (on V), and (ii) each of US and U@ meets Vy, simply in a
variety of normal dimension a + b —n.

In any application of the method of degenerate collineations, as we have described it above,
the choice of the system w(€) — the reducing system as we may call it — will obviously be important;
and in fact we shall have to use different types of reducing system for different objectives. We
now consider the effect of our first choice of such a reducing system which we shall denote by

@y (€).
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11.1. The reducing system @, (€)

This is the system{ of S,-collineations, whose equations, as they apply to points and lines of

S,, are as follows:
’ — - ' — 2
LKy =Xg, Xy = €Xy, Xy = €2y,
ml(e)

. %o ) ) (11.1.1)

We find, then, that the coordinate vector of the complete conic that is transformed by w, (€) into
the general complete conic (g, §) is

(200> €801, €211, E%gg, €315, €859 €100, €3bgy, €2B1y, €%00g, €b1y, byy)
and from this it follows that the equations of Z;(¢), for ¢ # 0, are

Z5(€): fa(@00s €201 €211, €00, €301, €253 €800, €300y, €%B1y, €2g, €D19, byy) =0 (A = 1,...,5)

(11.1.2)
From these, then, by putting ¢ = 0, we find the set of equations

(E): fi(2p,0,0,0,0,0; 0,0,0,0,0,b05) =0 (A=1,...,5) (11.1.3)

that will be satisfied, by what we have said above, by the limiting system X;(0) of Z;(€) as € > 0.
These equations (E) are all of the form

kalirbp =0 (A =1,...,s), (11.1.4)

where the £, are constants and the M,, N, are non-negative integers.

If all the k, were zero, this would mean that the equations (11.1) of X, are satisfied by the
coordinate vector (1,0,0,0,0,0; 0,0,0,0,0,1); in other words, that Z; contains the 8n-conic
with x, = 0 as axis and the reference point X, as vertex. Let it be assumed, for the moment,
that X; does not contain all dn-conics. Then the reference system in S, can be so chosen that Z;
does not contain the particular 8n-conic in question. We may therefore assume that one or more
of the £, will not be zero. It now follows from (11.1.4) that every conic of Z;(0), and in particular
the generic member of every irreducible component of the system X;(0), must satisfy one or other
of the equations 45, = 0 and 4,, = 0; i.e. it must either pass through the fixed point X, or touch
the fixed line X, X,. In other words, each irreducible component of the system Z;(0) is either
contained in a system fi (= p) or in a system V ( = v).

If d = 4, and if Z, does not contain the threefold system &7, the above establishes an equiv-

alence relation of the form
Xy =mp+nv (11.1.5)

where m and n are non-negative integers. Further if Z, contains 8n, then the moving lemma
(§11) tells us that X, ~ 3; — 3; where each of the effective varieties Z; and X does not contain
81. Thus in all cases we have a virtual equivalence of the form

Zy ~ mp+nv, A (11.1.6)
when m and = are integers (positive, negative or zero). Hence:
A pair (u,v) is a complete equivalence base for fourfolds on Q.

t The discovery and properties of this useful variant w,(€) of van der Waerden’s reducing system w,(€) are
due to Dr J. A. Tyrrell who told me about them many years ago.
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While the reducing system @, (€) thus gives us a definite result for fourfold systems of complete
conics, it only tells us that any system X; with 4 < 3 is equivalent to a system Zj that lies on a
variety i or V of Q. For systems Z; we follow van der Waerden in using a different approach
system @,(€) as follows.

11.2. The reducing system w,(€)

This is the system of S,-collineations with equations

’ ’ ’
Xo = Xo, X = Xy, X = €4y,

4 ’ ’ (11.2.1)
Uy = €Uy, Uy = €Uy, Uy = Us.

wy(€):
This has the character, as e 0, of a ‘gradual projection’ of S, from the vertex X, on to the line
X,X,;. We now find that the complete conic that is transformed by w,(€), with € # 0, into the
general complete conic (a, b) is that with coordinate vector

(200> G015 @115 €002, €012, €2a505 €2bog, €2Dgy, €%h11, Ebg2, by, bo) ;
whence the equations of Z3(€), for € # 0, take the form
Z3(€): fa(00 G015 @115 €03, €8y, €2505 €2bgy, 621_701’ €2y, €booy €b1g, bop) =0 (A =1,...,,5). (11.2.2)
Thus, in this case, putting € = 0, we obtain the equations
(E) :fA(aoo, Qo1 Q1315 0, 0, 0; O’ 0’ 0: 0’ 0, b22) =0 (’\ = 1’ rees S), (11-2-3)
which must be satisfied by every conic of the limiting system 23(0) of Z;(€) as e 0.

If these equations (E) were all nugatory, this would mean that the equations (11.1) of X4
would be satisfied by every coordinate vector of the form

(400& Q015 2135 Oa Oa 0; 0, O: O: O’ Os bzz),

i.e. 5 would contain all §-conics with X, as vertex. If Z; does not consist entirely of §-conics,
then we can certainly choose X, so that the above possibility does not arise. Further, X, may
additionally be chosen so that at most a finite number of §-conics of 23 have vertex at X,, and
we may suppose that these 8-conics of Zg, with X, as vertex, are §; (i = 1, ..., ).

Since the equations (E) are not all nugatory (for X, chosen as above), they imply, for any
conic (a, b) of Z4(0), that

either (i) byy = 0, in which case (a, b) touches XX,
or  (ii) by, # 0, in which case the §-conic (ay, a4y, 215, 0, 0, 0; 0,0, 0,0, 0, b,,) belongs to the
system 2, and is therefore one of the conics §; with X, as vertex.

In the latter case the conic (g, §) of 4(0) meets Xy X, in the same two points as the §; in question.
It follows, then, from this that every conic of the system Z4(0), and in particular the generic
member of any irreducible component of 25(0), either touches XX, or meets this line in one
of a finite set of point-pairs. From this we deduce an equivalence relation of the form

Zg =mp*+ Ty, (11.2.4)

where m is a non-negative integer and T; is an effective threefold system of conics which all
touch the line X, X,. If Z; consists entirely of 5-conics, then, by the moving lemma, it is virtually
equivalent to a difference Z3— X3, such that neither ¥ nor X3 consists entirely of §-conics;
and, in place of (11.2.4), we get a virtual equivalence relation of the form

By ~ mp2+ T, (11.2.5)
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where m is an integer (possibly negative), and Ty may now have positive or negative components,
each of which, however, has the line X X, as a base tangent.
From (11.2.5) we also have, by S;-duality, an equivalence relation of the form

Zg ~ v+ U,, (11.2.6)

where n is an integer and Uy is a virtual system such that each of its irreducible components
(positive or negative) consists of conics which all pass through a fixed point. We take this point
to be X,.

We now fix attention on (11.2.6) and suppose that Uj is any one of the irreducible components
of Uy (whether it enters positively or negatively into Ug). Then Uy is a system with X, as a base
point, so that one of its equations is gy, = 0. By operating on U¥ with @,(¢) exactly as before,
and supposing that UF has at most a finite number, ¢ say, of §-conics with vertex X,, we are led
to a limit system Ug (0), equivalent to U, such that, for every conic (a, b) of Uz (0),

either (i) by = 0, so that the conic touches XX, necessarily at X,,
or (i) bgs # 0, in which case the conic meets X,X, in one of a finite set of point-pairs of
the form (X, Py), i = 1,...,¢

Since the system of conics (earlier denoted by jiv) that touch a given line at a given point is a
specialization of the general system jiv, the above analysis leads to an equivalence relation of the
form U¥ ~ rjiv +sp2, where r and s are non-negative integers; also, by use of the moving lemma,
we can extend the scope of such a relation to include systems U§ that consist entirely of §-conics

in the form
U ~ riiv +sp?, (11.2.7)

where the integers 7, s may now be pdsitive, negative or zero.
Finally, combining (11.2.7) with (11.2.6), we arrive at the general equivalence relation,
applicable to all systems s, in the form

Zg ~ mp2 +1fiv +nv? , (11.2.8)
where m, r, n are integers. Hence:

The triad (p2, [iv, v2) constitutes a complete equivalence base for threefolds on Q.

Although the above proof applies, with minor adjustments, to the particular threefold &7,
we observe directly that

3~ (2v—p) (2u—v) ~ —2pu2+Buv — 2v2 ~ — 22 4 10(iV — 2v2,

11.3. Equivalence base for threefolds on &

The two types, @,(€) and @,(€), of reduction system that we have been using have the obvious
property that the S,-collineations comprising them all carry any irreducible system of 3-conics
into another system of 8-conics, this term being used in the broad sense; and they can therefore
be applied to investigate equivalence bases on 8 itself as the non-singular model for the §-conic
as an independent geometric variable. The equations of an irreducible system of 3-conics may
still be written in the form (11.1), these to include of course the equations of 3 itself.

Consider first, then, an irreducible threefold system Z; of 8-conics, other than &n itself; and
apply the reduction system w, (€) asin § 11.1. This gives, as the limit of Z;(€) as € > 0, an equivalent
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system Z4(0) such that every conic (a,5) of Z4(0) satisfies one or other of the equations gy = 0
or by, = 0; but now, since (a, ) is a 8-conic (possibly a 81-conic), the condition &,, = 0 means
that the vertex of (g, b) lies on the line X, X,. It follows, then, that every irreducible component
of Z4(0) is either the system of §-conics that pass through X, or the system of 8-conics with
vertices on X, X;. Thus, in the notation of § 7.4, we may write

s =mK+n]

where m and # are non-negative integers. As regards the case where Z; is 8n, we recall from §7.4
that K = pd and (by (7.4.3)) v3 = 2] on §; whence we may write

18 ~ (2p—v)d ~ 2K -2J
on 3. It follows, then, without exception, that K and J constitute a (complete) base for threefolds on 8.

11.4. Base for surfaces on & .

Let =, denote an irreducible oo?-system of 3-conics with equations (11.1); and let us suppose
at first that Z, does not consist entirely of dn-conics. We can then choose the reference point X,
in S, so that at most a finite number of members of Z, have vertex at X, and that no one of these
is a dn-conic. We now apply the reduction system m,(¢€), as in §11.2; and this leads to a system
Z,(0), equivalent to X,, such that every member (a,5) of Z,(0) — whether a §-conic or a &n-
conic — either has by, = 0, in which case it has its vertex on X, X, or it has by, # 0, in which case
it meets X,X, in one of a finite set of point-pairs on this line. It follows that each irreducible
component of Z,(0) is either contained in the co®-system J of §-conics with vertex on X X, or
it is an co?-system of 3-conics that meet XX, in a fixed pair of points. An irreducible system of
the latter kind, however, is either the system 1 of §-conics with XX, as a fixed arm, in which
case it is contained in J, or it is a system @ of 8-conics whose arms each contain one of the two

fixed points. Thus we may write £, = mo + By, (11.4.1)

where m is an integer and E, is an oo?-system of 8-conics (or dn-conics) that is contained in a
system J (of 8-conics with vertices on a fixed line).

If 3, consists entirely of dn-conics, then an application of the moving lemma will replace
(11.4.1) by the virtual equivalence formula

Iy ~ mo+Ey, (11.4.2)

where E, is now a virtual co?-system belonging to J.

For the further discussion of E,, it is possible to proceed as before by considering any one of
the irreducible components of E, (whether it appears positively or negatively in E,) and applying
to it a reducing system ws(€), the inverse of w,(€), which has the character of a retraction of S,
towards X,. As it happens, however, it is easy to identify a base for surfaces on the threefold J,
regarded now as a threefold on §; for J is, in fact, a rational planar threefold °Rj of the general
kind generated by planes joining homographically related points of a conic ¢%, a twisted cubic ¢3
and a rational normal quartic curve ¢4, these three spanning a space S;; (§7.4). The generating
planes of J are a-planes, each representing the 3-conics with vertex at a fixed point of X,X;
and J possesses a unique minimum directrix surface t — an °R§ with ¢* and ¢® as directrix curves —
representing 8-conics with X,X; as one arm. A base for surfaces on J consists of a generating
plane « together with the surface t; and it follows then that

By ~ na+pt  (n, p integers)
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on J, and therefore also on 8. Combining this with (11.4.2) we have the general formula

‘ , 2y ~ mo+no+pt - (11.4.3)
on 8, where m, n, p are integers. Thus:

The surfaces o, T, @ constitute a complete baset for surfaces on 8.

We add a final remark about the threefold J. This concerns the surface p — an 3F}? — which
maps all the dn-conics with vertices on X, X,. This meets each generating plane a of J in the conic
a that lies in that plane; and it must therefore be algebraically equivalent (on J and on 3) to a
combination of the form 25 +no. From the orders of the surfaces involved we deduce that n = 2;

so that
p= 2‘t+2oc ‘ (11.4.4)

on §; and this supplements (7.5.3) which gives the equivalence of ¢ on 8.

APPENDIX A. FURTHER Q-MODELS OF TRIPLY INFINITE SYSTEMS OF GONICS
A 1. The model i® of (complete) conics through two fixed points

This can be thought of as the Q-model of all circles in S,; and it is perhaps surprising that its
investigation turns out to be one of the most difficult that we shall encounter.

We begin then by comparing ji? with the general threefold p? that has already been discussed
in some detail (§10). Each of p? and fi? is the Q-transform of a solid of Ay, in the former case of
a solid T which meets ¢ in four distinct points Py, ..., P, and in the latter case of a solid Z which
touches ¢ at a single} point P. If |G| and |F| denote the linear systems of surfaces, in T and %
respectively, that represent prime sections of p? and fi®respectively, then |G| is the complete system
of cubic surfaces in T that pass through the points Py, ..., P,, and p?, accordingly, is a normal
variety V28[15]; but |F| is a sub-system (not necessarily complete) of the cubic surfaces in %
that touch a fixed plane — the tangent plane 1* to ¢ at P - at a fixed point P of this plane. If
|F| denotes the complete system of such surfaces, then |F| is of freedom 16 and grade 23, so that
its projective model is a normal threefold H2[16], whence, since ji? is a specialization of p?, we

"deduce that |F| must be a proper sub-system of |F|. We find, in fact, by an inspection of the
parametric equations of ji2, that |F] is a sub-system of freedom 15 of |F|; and hence ji? is a
threefold W = W23[15], projection of H2[16] from a point U external to the latter, To study W,
therefore, we have first to study in some detail the normal variety H = H*[16] and then to
discuss the projection of H into W from a suitable external point U. While outlining, stage by

1 For the record, it should be noted that we dlsagree with Severi’s derivation [S, pp. 317-319] of a mnmmum
base for surfaces on 8. Severi finds that such a minimum base consists of four surfaces which he denotes by =/,
G’, ¥, these being the surfaces which we have denoted by 1, &, o and p respectively (the last two formmg the
base for surfaces on 8n); and he attempts to prove that these four surfaces are algebraically independent on §
by showing that they have a non-singular self-intersection matrix on 8. However, our formula (11.4.4), which
states that p ~ 21+ 2a on §, already contradicts the independence of Severi’s four surfaces on 3. Further, as
regards Severi’s intersection matrix, I find the following corrections to some of his intersection numbers:

[ 9]=2 [G¥]=2 and [¥ 9] =4;

and these corrections do in fact result in an intersection matrix of determinant 0.
1 A solid of A; that touches ¢ at a point, and has no other point in common with ¢, is the intersection of a
unique pair of contact primes of ¢.

32 ) Vol. 306. A
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stage, the course and results of this investigation, we do not consider it necessary to reproduce
here the details of the lengthy algebraic computations that were required to carry it through.

Consider first then the normal variety H, projective model of the cubic surfaces in the solid T
that touch the plane t* at the point P of this plane. To the first neighbourhood of P in T there
corresponds a single point X of H; and we find that X is a quadruple point of H and that the
nodal cone Z of H at X is a Veronese cone (having .. Veronese surface as its general prime
section). On the other hand we find that to the neignbourhoodt in T of each direction d at P
in t* there corresponds on H a line that passes through X and lies on E; also that, as 4 varies
(in t*) this line generates a quadric cone y with X as vertex. Further, there exists on y one
particular conic § whose points correspond to sections of neighbourhoods of the directions 4
by the plane t*. To the plane t* itself there corresponds on H a rational quintic scroll ¥ with &
as directrix conic; and finally, to the quadric surface ®* in which T meets M, residually to t¥,
there corresponds on H a surface & — an F14 (cf. §7.4) — which contains the conic 5 and meets T
in two of its generators gy, g,.

As regards the point U from which H is to project into a threefold W = ji2, we find that U,
being external to both H and &, lies in the ambient solid of the quadric cone y but not in the
plane of the conic 5. This implies, on projection from U, that W has a quadruple point which may
be taken to be X; but it now possesses a double plane p through X, projection of the cone y;
and the conic & projects into a conic & in B (not through X). The nodal cone of W at X - pro-
jection of E — is a special Veronese cone with §§ as double plane. Further, keeping to the notation
of §7.5, the scroll T projects into a scroll © with & as directrix conic, and the surface & projects
into a surface o that passes through 4 and meets t in two of its generators g,, g,.

We now give the interpretation of the above results in terms of the mapping on W (= ji?)
of the system of (complete) conics through two points A, B of S,:

(i) X maps the n-conic with A, B as eyes,

(ii) & maps dn-conics with AB as axis,

(iii) P maps n-conics with AB as axis,

(iv) T maps &-conics with AB as one arm,

(v) o maps 3-conics with arms through A and B respectively, and

(vi) g1, gsrepresentd-conics with AB asone arm and the other arm through A or B respectively.

The intersection fi?3 consists of t and @ (of combined order 19); fi%n consists of the plane B
counted quadruply; and fi%n is the conic 4, also counted quadruply.

A 2. The threefold pv

This maps complete conics (S, E) such that S is apolar to a fixed comc-envelope o while E is
apolar to a fixed conic-locus s. Its table of virtual orders, analogous to that for p? in §10, is

nv uvd = pvn - pvdn
virtual order 28 14 16

t Let H be the threefold H2%[18] which is the projective model of cubic surfaces of T that pass (sxmply)
through P. Further let 7 be the plane of H that corresponds to the neighbourhood of P. Then H is the pro_]ectxon
of H from a line ¢ of n. The tangent solids to H at points of ¢ form a quadric cone, and they project from ¢ into the
generators of a (two-dimensional) quadric cone on H whose vertex X is the projection of n. Further the plane
t* in T represents a surface 'F® on H, which contains #; and the tangent planes to this surface at points of ¢
project into the points of a conic & on the above~mentloned quadric cone.
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The 3-conics of the (self-dual) system are defined by the pairs of lines that are conjugate for ¢
and meet on s; the n-conics by the point-pairs that are conjugate for s whose joins touch o; and
the 81-conics are those whose vertices lie on s and whose axes touch o. The surface pv3 is a rational
scroll R of which each generator maps 3-conics (of the system) with a fixed vertex on s; and
puvn is a scroll 951 whose generators correspond dually to the tangents to 6; and these two scrolls
meet in an elliptic curve 1C16 which is pvén. Each of °R4 and °S'¢ is generated by chords joining
point-pairs of a rational involution on 1C1¢,

The Ag-model of pv is a quadric V3, section of a quadric @ by a prime II; and pv is therefore
the projective model of sections of V2 by the cubic primals of II that contain a rational normal
quartic curve ¢ of V3, section of ¢ by II. The neighbourhood of ¢ on V3 represents °S'4; and "R
is represented on V2 by the sextic surface — generated by chords of ¢ — in which V3 is met by the
chord locus M3 of ¢. ‘

A 3. The thregfold piv

This maps the (complete) conics of S, that pass through a fixed point P and touch a fixed line
# not passing through P. We denote this system of conics by Z. Thus X is a self-dual system, clearly
a specialization of the system represented by pv; and jiv must have the same table of virtual
orders, properly interpreted, as that given for pv.

The 8n-conics of = (axes through P, vertices on p) are mapped on a rational normal quartic
curve ¢ of Q, a curve of the equivalence class a + b; its 8-conics (vertices on p and one arm through
P) are found to be mapped on Q by a rational septimic scroll °R7 with ¢ as a directrix curve, and
similarly its n-conics are mapped on another scroll °S7 with ¢ as directrix curve. Each of these
scrolls is the projective model of a plane curve system C#[O3].

The Ay-model of T is a quadric line-cone 2 = V3, section of a quadric @* of A; (cf. §6) by
a contact prime II of ¢, whose conic of contact with ¢ is k. Now @* is the quadric plane-cone
that projects ¢ from a tangent plane t* of this surface; whence the vertex of 2 is a line v in ¥,
its generating planes join v to the points of £, it touches ¢ at each point of £, and touches the
primal M along a cubic scroll y which corresponds to °R” on Q. The Q-model iv is the transform
of 2 by cubic primals that touch ¢ along , and it is a V8.

The table of virtual orders is to be interpreted by saying that jivd and fivy are the scrolls °R?
and 987 respectively, each counted twice; while fivén is the curve ¢ counted quadruply.

A 3.1, The treefold pv

This maps, as we saw in § 7.3, the system Z of (complete) conics of S, that have a given point Q
and a given line ¢ as pole and polar. The A;-model of X is a solid T that meets ¢ in a conic £
and in a residual point P remote from k. We find then that iv is the projective model of the com-
plete system of cubic surfaces in T that pass through £ and P, being therefore a V3![11]. The
table of virtual orders for |iv (remembering that pv = 2{IV) is

o~ -~

itm  fvdn
8

v ve

o

virtual order 14

“The plane = of k represents a plane o on [V, model of 3-conics with Q as vertex; and the
neighbourhood of k in © represents a conic @ in o, model of the dn-conics with Q as vertex. On the

32-2
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other hand, the neighbourhood of P in T represents a plane p on jiv, model of n-conics with ¢
as axis; and the neighbourhood of P on the quadric cone P(k) represents the conic 4 in B that
maps dn-conics with ¢ as axis.

Further, the quadric cone P(k) corresponds to a rational sextic scroll k on {iv (cf. §7.5(ii));
and this maps a second system of 3-conics of X, namely those whose arms correspond in the
harmonic homology of S, with Q) as vertex and g as axis. Dually, 2 contains a second system of
n-conics, those defined by corresponding point-pairs in the above homology; and these are
mapped on a sextic scroll k’ (of the type dual to k) on V. The A;-model of k' is the neighbourhood
of £ in T. The neighbourhood of & on the cone P(k) corresponds to a rational normal quartic
curve ¢ on fiv, the points of ¢ mapping dn-conics of T with vertices on ¢ and axes through Q. The
surface « has the conic b and the quartic curve ¢ as simple directrix curves whereas k' has the
conic @ and ¢ as simple directrix curves.

In agreement with the table of virtual orders, iv is a V3*; iv consists of o and «; [ivn consists
of § and «’; and [ivdn consists of the three curves g, b and ¢, of combined order eight.

A 4. The threefold pv

This threefold, in our notation, is the Q-model of a system Z of conics of S, that touch a given
line ¢ at a given point Q. Itis, plainly, a proper specialization of jiv and will have the same table
of virtual orders, with such multiplicity interpretations as may be necessary. The As-model of
Z is a solid T which meets ¢ in a conic £ and touches ¢ at a point P of £ (instead of meeting ¢
- in a residual point remote from £). If t* is the tangent plane of ¢ at P, then we find that fiv is the
projective model of the complete system of cubic surfaces in T that contain k and touch ©* at the point P of k.
Further, if z is the plane of &, then the section of M by T consists of = counted twice, together w1th
the plane t*.

Here again, since the degeneration sub-varieties of fiv are complicated, we shall confine our-
selves largely to a statement of results, as follows.

(i) The dn-conic with Q as vertex and q as axis. This is obviously a very spec:al member of Z.
Its image on [iv is the point X which corresponds to the neighbourhood of P in T. We find, then,
that X is a triple point of jiv, and that the nodal cone E of iv at X is such that its general prime
section is a rational normal cubic scroll °R3[4].

(ii) 8-Conics with vertex Q. These are mapped on a plane o of fiv which lies on E and corresponds
to the conic-plane & of ¢.

(iii) 8n-Conics with vertex Q. These are mapped on the conic a in «; this passes through X and
represents the neighbourhood of £ in =.

(iv) 8-Conics with q as one arm. These are mapped on a rational quintic scroll =, transform of the
tangent plane t* of ¢.

(v) 8-Conics with g as one arm and the other arm through Q. These are mapped on the tangent z,
to ¢ at X; and z, is also the generator of t through X.

Dual to systems (ii), ..., (v) we have the following: :

(vi) m-Conics with axis g. The map of these is a plane B, also through X and lying on E. This
corresponds to the ‘tangential neighbourhood’ of t* at P (cf. the case of fi2).

(vii) &n-Conics with axis q. These are mapped on the conic b in B; and b, which meets a at X,
is the directrix conic of 1. :

(viii) m-Conics with Q) as one eye. These are mapped on a second rational quintic scroll ¢’ with
a as directrix conic.
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(ix) n-Conics with Q as one eye, and the other eye on q. These are mapped onto the tangent z, to b
at X; and z, is the generator of t’ through X.

The intersection fivd consists of o counted twice together with the quintic scroll 7; and there is
a similar result for iv. Also jivdn consists of the pair of conics a, & each counted twice.

ArrENDIX B.NoTE OoN HALPHEN CONDITIONS
B 1. Preliminary

The early work of Halphen, Zeuthen and others on the foundations of enumerative calculus
for complete conics has been reviewed with detailed references in Severi (1916), particularly
in § 10 of this work: and an account of Zeuthen’s work appears in Zeuthen (1914, pp. 309-341).
From this early work there emerged the particular importance of a special type of condition
that could be imposed on complete conics. This is the type of condition — here to be called a
Halphen condition — which is such that it is satisfied either by every dn-conic or by an abnormal
plurality of 8n-conics. In terms of condition manifolds on Q, this means that the condition mani-
fold of a Halphen condition either contains the threefold 8n on Q entirely or meets this threefold
in a sub-variety of abnormal dimension. } The use of such conditions leads obviously to situations
in which a set of conditions, of combined weight five, are satisfied by an infinity of 8n-conics;
and in which, therefore, such basic enumerative formulae as (7.1.3) are inapplicable. This in
~ turn leads to a new and more difficult type of enumerative problem, here to be called a Halphen
problem, in which it is sought to compute the number of complete conics, other than dn-conics,
that satisfy a set of conditions, of combined weight five, when these are already satisfied by an
infinite family of 8n-conics, supposing only that the number of the residual solutions involved is
finite. It is precisely with this type of problem that Severi is concerned (see 8, §10 and pp. 292-
301), and we now wish to refer briefly to his approach and to the results that he obtains. The basis
of his method is consideration of geometry - including relations of equivalence — on the open
variety Q —&n.

B 2. Geometry on Q —8n

By the removal of 3n from Q, it is clear that all fourfolds on €, as also all curves on Q that meet
8n, are reduced to open varieties. But, where no ambiguity is possible, we shall use the same
symbols to denote these open varieties as we have previously used to denote their closures on Q.

Severi’s first objective then is to find a base for the equivalence of fourfolds on Q —&n; and his
result is that the triad of varieties (u, v, 8) constitutes such a base. The steps by which he arrives
at this conclusion can be summarized briefly as follows. He first notes that, in the birational
representation of Q on the space A of conic loci, any fourfold on Q that passes (simply or multiply)
through &n corresponds to a primal of A4 that passes at least doubly through the base Veronese
surface ¢ in A, and has nodal contact over ¢ with the chord-locus M of ¢ (its nodal cone at
each point of ¢ having the nodal cone of M at this point as a component). Using this, he then
finds an equivalence formula, valid equally on Q and on Q — 8, which exhibits every fourfold (either
on Q or on Q —&n) as a linear combination of p, v and 8. On Q, where y, v and § are dependent -
by virtue of the equivalence relation § ~ 2v—p — the above result only expresses that (,v)

t Plainly each of the conditions § and n is a Halphen condition, as is also any simple condition whose condition
manifold is the section of Q by a primal that contains the threefold &n.
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is a base for fourfolds on Q; but on Q —8n, where the fourfolds p, v and § are not so related, the
result means that p, v and 3 are a base for fourfolds on Q —8n.

Next, as regards a base for curves on Q —38n, Severi first considers the following families of
curves on Q:

(i) the oof-family of curves a — twisted cubic curves trisecant to 8 — which represent the
ordinary pencils of conics of S, (the lines of A;);

(ii) the cos-family of conics /, each representing a pencil-range of conics of S,, such that, on
Q, I8 = In = 1, while / does not meet 6n; and

(iii) the oof-family of conics ¢, each representing a hyperosculating (four-point contact)
pencil-range of S,, and each meeting 87 in one point which thus replaces the separate points
(on Q) in which a conic / meets § and 1 respectively. In the notation of §§7.1 and 7.2, we see
thata ~ u+2v,l ~ u+v, while ¢ (on Q) is a proper specialization of /; so that (a,!) is a legitimate
choice of base for curves on Q. On Q — &1, however, the intersection of ¢ with 1 has been removed;
so that, whereas 3 = In = 1, we have 5 = tn = 0. Thus ¢ is not equivalent to / on Q —&n; and
Severi takes the triad (g, /, ) as a base for curves on Q —8n, complementary to the base (g, v, 8)
for fourfolds.

Severi then computes that (on Q —&n)

[na] =[W] =[p] =1,
[va] =2, [v]=[vi]=1,
[8a] = 3 [8]=1, [8]=0,

whence the relevant intersection matrix for the bases (p, v, 8) and (a,/, ) on Q—8n is

111
2 1 1
3 1 0

which has determinant 1. From this Severi infers that (u,v,8) and (a,l,t) are minimum bases for
Jourfolds and curves on Q — 8.

Translating the above result about curves on Q — 81 into the language of quadruple conditions
on complete conics, Severi defines the following characteristics of the totality of quadruple con-
ditions on complete conics relative to the geometry of Q — &n:

p': the condition on a complete conic that its image point on Q should lie on a given curve a,
i.e. that the complete conic should belong to a given general pencil of conics;

Vv’: the condition on a complete conic that its image point should lie on a given conic /, i.e. that
the conic belong to a given general pencil-range; and

t’: the condition on a complete conic that its image point lie on a given conic ¢, i.e. that the
complete conic belong to a given hyperosculating pencil-range.

With the use of this notation, Severi now computes the values of the coefficients a, £, ¥ when

‘a given simple condition ¢ is expressed (on Q — &) in the form ¢ ~ ap + Bv+y38 (a, B, v integers).
Thus he finds that
oW =a+26+3y, vv=a+f+y and o' =a+p,

whence it follows that

a=c@v—p'—1'), F=c(+2t'-38') and 7y =c(v'—1').
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In particular he finds that N~ 3u—3v+3,

a formula which reduces on Q to the known formula n ~ 2u—v. Similarly, Severi computes the
values of &', #’, v’ when a fourfold condition on complete conics is written in the form

a'} +p'v +y'7.

B 8. Some further remarks on Halphen problems

In a short note, arising from Severi’s theory as outlined above, the present author (Semple
1951) made some further suggestions. In the first place, he suggested that instead of adjoining &
to p, v to give a base for fourfolds on Q —8n, the same effect (with more symmetry) could be
achieved by adjoining to p, v any general fourfold p which is the section of Q by a quadric through
31. On Q, in fact, we have p ~ 2(u+V), so that p ~ 3j+35. A particular concrete example of
a condition p is as follows:

The fourfold system of complete conics of S, that have four-point contact with some conic of a given self-
polar net (the net of conics with a given self- polar triangle) is a Halphen system of conics that contains
all dn-conics.

If the equation of the self-polar net in S, is taken to be Agxf+ A4} + 2,43 = 0, and if the
general conic of S, is taken to be xT4x = 0, then the above condition on this conic can be written

in the form
Ayg Ay Agy + 135085, |4] = 0

which, since |4]| = 0 is the equation of M in A;, and since 4,, = 0, 45 = 0, 4y, = 0 are the
equations of three quadrics through ¢, represents in A; a sextic primal passing doubly through
¢ and having nodal contact with M over ¢; and such primals (see §2) correspond to sections of
Q by quadrics through 37.

It was next remarked (by use of the Aj-representation), that the total intersection of 3 with
a pair p,, p; of the sections of Q by quadrics through &7 consists of the threefold 81 together with
a surface consisting of a finite number of the planes o that generate §; and it was found that the
number of these planes is 36. By use of this result and further degeneratlon arguments, it was
then found possible to compute all the numbers

pevlp? (a4 f+y =86,7 > 1),

in which the factor p? (y > 1) is to be interpreted as the intersection, residual to &n, of y of the
fourfolds p. Thus, for example, it was found that p5 = 1296. The numbers p*v#p? can now be
used for a limited class of calculations involving simple Halphen conditions of such a kind (as
we may say) as are sufficiently characterized by their representations in the form ap +bv+cp
(a, b, ¢ integers).

At the end of this note, the suggestion is made that another mode of attack on the same
problems could be to dilate &1 into a fourfold, £ say, on a birational model Q of Q. Thus, for
example, 0 might be defined as the projective model of all sections of Q by cubic primals through
1. (Quadric primals through 8n would have all the conic planes of 8 as fundamental planes.)
We shall not attempt here, however, any further examination of this suggestion.
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